Learning a dictionary of shape-components in visual cortex: comparison with neurons, humans and machines

In this thesis, I describe a quantitative model that accounts for the circuits and computations of the feedforward path of the ventral stream of visual cortex. This model is consistent with a general theory of visual processing that extends the hierarchical model of [Hubel and Wiesel, 1959] from primary to extrastriate visual areas. It attempts to explain the first few hundred milliseconds of visual processing and "immediate recognition". One of the key elements in the approach is the learning of a generic dictionary of shape-components from V2 to IT, which provides an invariant representation to task-specific categorization circuits in higher brain areas. This vocabulary of shape-tuned units is learned in an unsupervised manner from natural images, and constitutes a large and redundant set of image features with different complexities and invariances. This theory significantly extends an earlier approach by [Riesenhuber and Poggio, 1999a] and builds upon several existing neurobiological models and conceptual proposals. First, I present evidence to show that the model can duplicate the tuning properties of neurons in various brain areas (e.g., V1, V4 and IT). In particular, the model agrees with data from V4 about the response of neurons to combinations of simple two-bar stimuli [Reynolds et al., 1999] (within the receptive field of the S2 units) and some of the C2 units in the model show a tuning for boundary conformations which is consistent with recordings from V4 [Pasupathy and Connor, 2001]. Second, I show that not only can the model duplicate the tuning properties of neurons in various brain areas when probed with artificial stimuli, but it can also handle the recognition of objects in the real-world, to the extent of competing with the best computer vision systems. Third, I describe a comparison between the performance of the model and the performance of human observers in a rapid animal vs. non-animal recognition task for which recognition is fast and cortical back-projections are likely to be inactive. Results indicate that the model predicts human performance extremely well when the delay between the stimulus and the mask is about 50 ms. This suggests that cortical back-projections may not play a significant role when the time interval is in this range, and the model may therefore provide a satisfactory description of the feedforward path. Taken together, the evidences suggest that we may have the skeleton of a successful theory of visual cortex. In addition, this may be the first time that a neurobiological model, faithful to the physiology and the anatomy of visual cortex, not only competes with some of the best computer vision systems thus providing a realistic alternative to engineered artificial vision systems, but also achieves performance close to that of humans in a categorization task involving complex natural images. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

[1]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[2]  Martin A. Giese,et al.  Learning Features of Intermediate Complexity for the Recognition of Biological Motion , 2005, ICANN.

[3]  E. Rolls Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. , 1984, Human neurobiology.

[4]  Bartlett W. Mel,et al.  Minimizing Binding Errors Using Learned Conjunctive Features , 2000, Neural Computation.

[5]  F. Girosi,et al.  A Connection Between GRBF and MLP , 1992 .

[6]  Y. Dan,et al.  Stimulus Timing-Dependent Plasticity in Cortical Processing of Orientation , 2001, Neuron.

[7]  Thomas Serre,et al.  A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex , 2005 .

[8]  Lior Wolf,et al.  Perception Strategies in Hierarchical Vision Systems , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[9]  T. Poggio,et al.  Cognitive neuroscience: Neural mechanisms for the recognition of biological movements , 2003, Nature Reviews Neuroscience.

[10]  Michael C. Burl,et al.  Finding faces in cluttered scenes using random labeled graph matching , 1995, Proceedings of IEEE International Conference on Computer Vision.

[11]  Bruno A. Olshausen,et al.  A multiscale dynamic routing circuit for forming size- and position-invariant object representations , 1995, Journal of Computational Neuroscience.

[12]  Aapo Hyvärinen,et al.  A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images , 2001, Vision Research.

[13]  K. Rockland,et al.  Divergent feedback connections from areas V4 and TEO in the macaque , 1994, Visual Neuroscience.

[14]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[15]  E. Rolls The orbitofrontal cortex and reward. , 2000, Cerebral cortex.

[16]  Isabel Gauthier,et al.  Feature learning during the acquisition of perceptual expertise , 1998, Behavioral and Brain Sciences.

[17]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[18]  Minami Ito,et al.  Representation of Angles Embedded within Contour Stimuli in Area V2 of Macaque Monkeys , 2004, The Journal of Neuroscience.

[19]  Thomas Serre,et al.  Object recognition with features inspired by visual cortex , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[20]  Peter Meer,et al.  Synergism in low level vision , 2002, Object recognition supported by user interaction for service robots.

[21]  K. Rockland,et al.  Organization of individual cortical axons projecting from area V1 (area 17) to V2 (area 18) in the macaque monkey , 1990, Visual Neuroscience.

[22]  Pawan Sinha,et al.  Qualitative Representations for Recognition , 2002, Biologically Motivated Computer Vision.

[23]  R. Desimone,et al.  Clustering of perirhinal neurons with similar properties following visual experience in adult monkeys , 2000, Nature Neuroscience.

[24]  Y. Miyashita Neuronal correlate of visual associative long-term memory in the primate temporal cortex , 1988, Nature.

[25]  D Sagi,et al.  Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Jonathan D. Cohen,et al.  Prefrontal cortex and flexible cognitive control: rules without symbols. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[28]  David G. Lowe,et al.  Towards a Computational Model for Object Recognition in IT Cortex , 2000, Biologically Motivated Computer Vision.

[29]  G Kovács,et al.  Cortical correlate of pattern backward masking. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[31]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[32]  S. Thorpe,et al.  How parallel is visual processing in the ventral pathway? , 2004, Trends in Cognitive Sciences.

[33]  P. Goldman-Rakic,et al.  Areal segregation of face-processing neurons in prefrontal cortex. , 1997, Science.

[34]  Simon J Thorpe,et al.  Animals roll around the clock: the rotation invariance of ultrarapid visual processing. , 2006, Journal of vision.

[35]  T. Poggio,et al.  Neural mechanisms of object recognition , 2002, Current Opinion in Neurobiology.

[36]  P. Lennie,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[37]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[38]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[39]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TE and TEO with medial temporal- lobe structures in infant and adult monkeys , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  Karl J. Friston,et al.  How the brain learns to see objects and faces in an impoverished context , 1997, Nature.

[41]  Thomas Serre,et al.  Modeling feature sharing between object detection and top-down attention , 2005 .

[42]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[43]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[44]  P. Fldik,et al.  The Speed of Sight , 2001, Journal of Cognitive Neuroscience.

[45]  Johan Wagemans,et al.  The effect of category learning on the representation of shape: dimensions can be biased but not differentiated. , 2003, Journal of experimental psychology. General.

[46]  C. Eriksen,et al.  Effects of noise letters upon the identification of a target letter in a nonsearch task , 1974 .

[47]  A P Georgopoulos,et al.  On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  A. Treisman,et al.  Perception of objects in natural scenes: is it really attention free? , 2005, Journal of experimental psychology. Human perception and performance.

[49]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[50]  David J. Freedman,et al.  Visual categorization and the primate prefrontal cortex: neurophysiology and behavior. , 2002, Journal of neurophysiology.

[51]  Edward H. Adelson,et al.  Motion illusions as optimal percepts , 2002, Nature Neuroscience.

[52]  Charles F. Stevens Models are common; good theories are scarce , 2000, Nature Neuroscience.

[53]  Nancy Kanwisher,et al.  fMRI evidence for objects as the units of attentional selection , 1999, Nature.

[54]  Heiko Wersing,et al.  Evolutionary optimization of a hierarchical object recognition model , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[55]  Josef Syka and Michael M. Merzenich Plasticity and signal representation in the auditory system , 2005 .

[56]  T. Poggio,et al.  The Mathematics of Learning: Dealing with Data , 2005, 2005 International Conference on Neural Networks and Brain.

[57]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[58]  M. Merzenich,et al.  Representation of the cochlear partition of the superior temporal plane of the macaque monkey. , 1973, Brain research.

[59]  Dario L. Ringach,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[60]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  Shimon Ullman,et al.  Feature hierarchies for object classification , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[62]  T. Poggio,et al.  A network that learns to recognize three-dimensional objects , 1990, Nature.

[63]  Jitendra Malik,et al.  When is scene identification just texture recognition? , 2004, Vision Research.

[64]  G. Wallis,et al.  Learning invariant responses to the natural transformations of objects , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[65]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[66]  R. Desimone,et al.  Visual areas in the temporal cortex of the macaque , 1979, Brain Research.

[67]  P. H. Schiller,et al.  The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey , 1993, Visual Neuroscience.

[68]  E. Rolls,et al.  A Neurodynamical cortical model of visual attention and invariant object recognition , 2004, Vision Research.

[69]  Tomaso Poggio,et al.  Intracellular measurements of spatial integration and the MAX operation in complex cells of the cat primary visual cortex. , 2004, Journal of neurophysiology.

[70]  R. Vogels,et al.  Inferotemporal neurons represent low-dimensional configurations of parameterized shapes , 2001, Nature Neuroscience.

[71]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .

[72]  P M Gochin Properties of simulated neurons from a model of primate inferior temporal cortex. , 1994, Cerebral cortex.

[73]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[74]  J. Hawkins,et al.  On Intelligence , 2004 .

[75]  D. Heeger Half-squaring in responses of cat striate cells , 1992, Visual Neuroscience.

[76]  P. H. Schiller Effect of lesions in visual cortical area V4 on the recognition of transformed objects , 1995, Nature.

[77]  B L Finlay,et al.  Quantitative studies of single-cell properties in monkey striate cortex. IV. Corticotectal cells. , 1976, Journal of neurophysiology.

[78]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[79]  T. Sato,et al.  Interactions of visual stimuli in the receptive fields of inferior temporal neurons in awake macaques , 2004, Experimental Brain Research.

[80]  D. Long Probabilistic Models of the Brain. , 2002 .

[81]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[82]  S. Thorpe,et al.  Spike times make sense , 2005, Trends in Neurosciences.

[83]  Takeo Kanade,et al.  A statistical method for 3D object detection applied to faces and cars , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[84]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[85]  T. Bonhoeffer,et al.  Pairing-Induced Changes of Orientation Maps in Cat Visual Cortex , 2001, Neuron.

[86]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. , 1976, Journal of neurophysiology.

[87]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[88]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .

[89]  J. Maunsell,et al.  The Effect of Perceptual Learning on Neuronal Responses in Monkey Visual Area V4 , 2004, The Journal of Neuroscience.

[90]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[91]  S. Thorpe,et al.  The Time Course of Visual Processing: From Early Perception to Decision-Making , 2001, Journal of Cognitive Neuroscience.

[92]  Y. Miyashita Inferior temporal cortex: where visual perception meets memory. , 1993, Annual review of neuroscience.

[93]  Antonio Torralba,et al.  Depth Estimation from Image Structure , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[94]  D I Perrett,et al.  Organization and functions of cells responsive to faces in the temporal cortex. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[95]  A. Parker,et al.  Spatial properties of neurons in the monkey striate cortex , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[96]  M. Mishkin,et al.  Learning increases stimulus salience in anterior inferior temporal cortex of the macaque. , 2001, Journal of neurophysiology.

[97]  Yann LeCun,et al.  Learning a similarity metric discriminatively, with application to face verification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[98]  Allan D. Jepson,et al.  From Features to Perceptual Categories , 1992, BMVC.

[99]  Naomi M. Kenner,et al.  How fast can you change your mind? The speed of top-down guidance in visual search , 2004, Vision Research.

[100]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[101]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[102]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[103]  E. Miller,et al.  THE PREFRONTAL CORTEX AND COGNITIVE CONTROL , 2000 .

[104]  Ulf Knoblich,et al.  Stimulus Simplification and Object Representation: A Modeling Study , 2002 .

[105]  Alex Holub,et al.  Exploiting Unlabelled Data for Hybrid Object Classification , 2005 .

[106]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[107]  E. Miller,et al.  Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex. , 2005, Cerebral cortex.

[108]  Tomaso A. Poggio,et al.  Face recognition with support vector machines: global versus component-based approach , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[109]  N. Kanwisher,et al.  Visual attention: Insights from brain imaging , 2000, Nature Reviews Neuroscience.

[110]  I. Ohzawa,et al.  Receptive field structure in the visual cortex: does selective stimulation induce plasticity? , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Jacques Gautrais,et al.  Rapid Visual Processing using Spike Asynchrony , 1996, NIPS.

[112]  J. Maunsell,et al.  Physiological correlates of perceptual learning in monkey V1 and V2. , 2002, Journal of neurophysiology.

[113]  Y. Amit,et al.  An integrated network for invariant visual detection and recognition , 2003, Vision Research.

[114]  Y. Miyashita,et al.  Neural representation of visual objects: encoding and top-down activation , 2000, Current Opinion in Neurobiology.

[115]  Peter Dayan,et al.  Neural Models for Part-Whole Hierarchies , 1996, NIPS.

[116]  M. Hasselmo,et al.  The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey , 1989, Behavioural Brain Research.

[117]  Federico Girosi,et al.  Support Vector Machines: Training and Applications , 1997 .

[118]  M. A. Repucci,et al.  Responses of V1 neurons to two-dimensional hermite functions. , 2006, Journal of neurophysiology.

[119]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[120]  K Tanaka,et al.  Neuronal mechanisms of object recognition. , 1993, Science.

[121]  W. Schultz,et al.  Modifications of reward expectation-related neuronal activity during learning in primate orbitofrontal cortex. , 2000, Journal of neurophysiology.

[122]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[123]  D. C. Essen,et al.  Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. , 1996, Journal of neurophysiology.

[124]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[125]  E. Miller,et al.  Different time courses of learning-related activity in the prefrontal cortex and striatum , 2005, Nature.

[126]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[127]  R. Buckner,et al.  THE COGNITIVE NEUROSCIENCE OF REMEMBERING , 2001 .

[128]  David L. Sheinberg,et al.  Noticing Familiar Objects in Real World Scenes: The Role of Temporal Cortical Neurons in Natural Vision , 2001, The Journal of Neuroscience.

[129]  Sayan Mukherjee,et al.  Feature reduction and hierarchy of classifiers for fast object detection in video images , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[130]  J. A. Horel,et al.  Cortical afferents to behaviorally defined regions of the inferior temporal and parahippocampal gyri as demonstrated by WGA‐HRP , 1992, The Journal of comparative neurology.

[131]  W. Reichardt,et al.  Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the visual system of the fly , 1987, Biological Cybernetics.

[132]  Idan Segev,et al.  On the Transmission of Rate Code in Long Feedforward Networks with Excitatory–Inhibitory Balance , 2003, The Journal of Neuroscience.

[133]  Edmund T. Rolls,et al.  A Model of Invariant Object Recognition in the Visual System: Learning Rules, Activation Functions, Lateral Inhibition, and Information-Based Performance Measures , 2000, Neural Computation.

[134]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[135]  C. Malsburg Binding in models of perception and brain function , 1995, Current Opinion in Neurobiology.

[136]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[137]  Simon J. Thorpe,et al.  Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited , 2006, Vision Research.

[138]  C. Connor,et al.  Population coding of shape in area V4 , 2002, Nature Neuroscience.

[139]  D. Perrett,et al.  Time course of neural responses discriminating different views of the face and head. , 1992, Journal of neurophysiology.

[140]  J. Maunsell,et al.  Visual effects of lesions of cortical area V2 in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[141]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[142]  Leslie G. Ungerleider,et al.  The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[143]  U Yinon,et al.  Evidence for long‐term functional plasticity in the visual cortex of adult cats , 1982, The Journal of physiology.

[144]  M. Harries,et al.  Viewer-centred and object-centred coding of heads in the macaque temporal cortex , 2004, Experimental Brain Research.

[145]  Frédéric Jurie,et al.  Creating efficient codebooks for visual recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[146]  R. L. de Valois,et al.  Cartesian and non-Cartesian responses in LGN, V1, and V2 cells , 2001, Visual Neuroscience.

[147]  Michael I. Jordan,et al.  The Handbook of Brain Theory and Neural Networks , 2002 .

[148]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[149]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[150]  Keiji Tanaka,et al.  Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. , 1998, Journal of neurophysiology.

[151]  Y. Miyashita,et al.  Neural organization for the long-term memory of paired associates , 1991, Nature.

[152]  D. Heeger,et al.  Contrast normalization and a linear model for the directional selectivity of simple cells in cat striate cortex , 1997, Visual Neuroscience.

[153]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[154]  Jennifer Louie A biological model of object recognition with feature learning , 2003 .

[155]  E M Callaway,et al.  Visual scenes and cortical neurons: what you see is what you get. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[156]  R Van Rullen,et al.  Face processing using one spike per neurone. , 1998, Bio Systems.

[157]  R E Weller,et al.  Qualitative and quantitative features of axons projecting from caudal to rostral inferior temporal cortex of squirrel monkeys , 1995, Visual Neuroscience.

[158]  Laurenz Wiskott,et al.  Slow feature analysis yields a rich repertoire of complex cell properties. , 2005, Journal of vision.

[159]  S. Thorpe,et al.  A Limit to the Speed of Processing in Ultra-Rapid Visual Categorization of Novel Natural Scenes , 2001, Journal of Cognitive Neuroscience.

[160]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[161]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[162]  Mark C. W. van Rossum,et al.  Fast Propagation of Firing Rates through Layered Networks of Noisy Neurons , 2002, The Journal of Neuroscience.

[163]  Michel Vidal-Naquet,et al.  Visual features of intermediate complexity and their use in classification , 2002, Nature Neuroscience.

[164]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[165]  Edmund T. Rolls,et al.  Position invariant recognition in the visual system with cluttered environments , 2000, Neural Networks.

[166]  N. Sigala,et al.  Visual categorization shapes feature selectivity in the primate temporal cortex , 2002, Nature.

[167]  Yann LeCun,et al.  Off-Road Obstacle Avoidance through End-to-End Learning , 2005, NIPS.

[168]  Keiji Tanaka,et al.  Connections between Anterior Inferotemporal Cortex and Superior Temporal Sulcus Regions in the Macaque Monkey , 2000, The Journal of Neuroscience.

[169]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[170]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[171]  Shree K. Nayar,et al.  Ordinal Measures for Image Correspondence , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[172]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[173]  K. Miller Understanding layer 4 of the cortical circuit: a model based on cat V1. , 2003, Cerebral cortex.

[174]  M. Riesenhuber,et al.  Face processing in humans is compatible with a simple shape–based model of vision , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[175]  Y. LeCun,et al.  Learning methods for generic object recognition with invariance to pose and lighting , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[176]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[177]  Robert L. Goldstone,et al.  The development of features in object concepts , 1998, Behavioral and Brain Sciences.

[178]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. , 1976, Journal of neurophysiology.

[179]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[180]  Peter Földiák,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Comput..

[181]  J. Lund,et al.  Anatomical substrates for functional columns in macaque monkey primary visual cortex. , 2003, Cerebral cortex.

[182]  Pietro Perona,et al.  Towards automatic discovery of object categories , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[183]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[184]  D. V. van Essen,et al.  Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[185]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[186]  Thomas Serre,et al.  On the Role of Object-Specific Features for Real World Object Recognition in Biological Vision , 2002, Biologically Motivated Computer Vision.

[187]  E. Rolls Learning mechanisms in the temporal lobe visual cortex , 1995, Behavioural Brain Research.

[188]  D. Perrett,et al.  Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. , 1994, Cerebral cortex.

[189]  Laurenz Wiskott,et al.  How Does Our Visual System Achieve Shift and Size Invariance , 2004 .

[190]  Pietro Perona,et al.  Combining generative models and Fisher kernels for object recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[191]  P. Lennie Single Units and Visual Cortical Organization , 1998, Perception.

[192]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[193]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[194]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[195]  G. Boynton,et al.  Visual Cortex: The Continuing Puzzle of Area V2 , 2004, Current Biology.

[196]  Bruno A Olshausen,et al.  Timecourse of neural signatures of object recognition. , 2003, Journal of vision.

[197]  Leslie G. Ungerleider,et al.  Cortical projections of area V2 in the macaque. , 1997, Cerebral cortex.

[198]  T. Gawne,et al.  Responses of primate visual cortical V4 neurons to simultaneously presented stimuli. , 2002, Journal of neurophysiology.

[199]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[200]  S. Zeki,et al.  Modular Connections between Areas V2 and V4 of Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[201]  T. Poggio A theory of how the brain might work. , 1990, Cold Spring Harbor symposia on quantitative biology.

[202]  K R Gegenfurtner,et al.  Processing of color, form, and motion in macaque area V2 , 1996, Visual Neuroscience.

[203]  Hisao Nishijo,et al.  Differential characteristics of face neuron responses within the anterior superior temporal sulcus of macaques. , 2005, Journal of neurophysiology.

[204]  Eero P. Simoncelli,et al.  Computational models of cortical visual processing. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[205]  C. Gross Brain, Vision, Memory: Tales in the History of Neuroscience , 1998 .

[206]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[207]  D. J. Felleman,et al.  Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex , 1997, The Journal of comparative neurology.

[208]  J. Leo van Hemmen,et al.  Temporal association , 1991 .

[209]  Lior Wolf,et al.  Empirical Comparison between Hierarchical Fragments Based and Standard Model Based Object Recognition Systems , 2006 .

[210]  Nicolas P. Rougier,et al.  Learning representations in a gated prefrontal cortex model of dynamic task switching , 2002, Cogn. Sci..

[211]  R. Johansson,et al.  First spikes in ensembles of human tactile afferents code complex spatial fingertip events , 2004, Nature Neuroscience.

[212]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[213]  S. Thorpe,et al.  Seeking Categories in the Brain , 2001, Science.

[214]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[215]  S. Thorpe,et al.  The time course of visual processing: Backward masking and natural scene categorisation , 2005, Vision Research.

[216]  A. J. Mistlin,et al.  Neurones responsive to faces in the temporal cortex: studies of functional organization, sensitivity to identity and relation to perception. , 1984, Human neurobiology.

[217]  R. Desimone,et al.  Activity of neurons in anterior inferior temporal cortex during a short- term memory task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[218]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[219]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[220]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[221]  Leslie G. Ungerleider,et al.  Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[222]  Michael S. Lewicki,et al.  Efficient auditory coding , 2006, Nature.

[223]  Keiji Tanaka Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. , 2003, Cerebral cortex.

[224]  T. Poggio,et al.  Are Cortical Models Really Bound by the “Binding Problem”? , 1999, Neuron.

[225]  Keiji Tanaka,et al.  Optical Imaging of Functional Organization in the Monkey Inferotemporal Cortex , 1996, Science.

[226]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[227]  D. Ruderman The statistics of natural images , 1994 .

[228]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[229]  J Gautrais,et al.  Rate coding versus temporal order coding: a theoretical approach. , 1998, Bio Systems.

[230]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. V. Multivariate statistical analyses and models. , 1976, Journal of neurophysiology.

[231]  David I. Perrett,et al.  Neurophysiology of shape processing , 1993, Image Vis. Comput..

[232]  David I. Perrett,et al.  Modeling visual recognition from neurobiological constraints , 1994, Neural Networks.

[233]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[234]  S. Thorpe,et al.  Dynamics of orientation coding in area V1 of the awake primate , 1993, Visual Neuroscience.

[235]  R. Desimone,et al.  The representation of stimulus familiarity in anterior inferior temporal cortex. , 1993, Journal of neurophysiology.

[236]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[237]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[238]  S. Grossberg,et al.  Context-sensitive binding by the laminar circuits of V1 and V2: A unified model of perceptual grouping, attention, and orientation contrast , 2001 .

[239]  Arnaud Delorme,et al.  Face identification using one spike per neuron: resistance to image degradations , 2001, Neural Networks.

[240]  J A Solomon,et al.  Model of visual contrast gain control and pattern masking. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[241]  I. Biederman,et al.  On the information extracted from a glance at a scene. , 1974, Journal of experimental psychology.

[242]  E. Bullmore,et al.  Society for Neuroscience Abstracts , 1997 .

[243]  Edmund T. Rolls,et al.  Invariant Object Recognition in the Visual System with Novel Views of 3D Objects , 2002, Neural Computation.

[244]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[245]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[246]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[247]  Kunihiko Fukushima,et al.  Cognitron: A self-organizing multilayered neural network , 1975, Biological Cybernetics.

[248]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[249]  Antonio Torralba,et al.  Building the gist of a scene: the role of global image features in recognition. , 2006, Progress in brain research.

[250]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[251]  H. Abarbanel,et al.  Dynamical model of long-term synaptic plasticity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[252]  N. Kanwisher,et al.  Stages of processing in face perception: an MEG study , 2002, Nature Neuroscience.

[253]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[254]  R. von der Heydt,et al.  Coding of Border Ownership in Monkey Visual Cortex , 2000, The Journal of Neuroscience.

[255]  N. Kanwisher,et al.  A Cortical Area Selective for Visual Processing of the Human Body , 2001, Science.

[256]  Thomas Serre,et al.  Realistic Modeling of Simple and Complex Cell Tuning in the HMAX Model, and Implications for Invariant Object Recognition in Cortex , 2004 .

[257]  K. Rockland Visual cortical organization at the single axon level: a beginning , 2002, Neuroscience Research.

[258]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[259]  E. Rolls,et al.  Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey , 1985, Brain Research.

[260]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[261]  A. J. Mistlin,et al.  Visual neurones responsive to faces , 1987, Trends in Neurosciences.

[262]  M. Potter Short-term conceptual memory for pictures. , 1976, Journal of experimental psychology. Human learning and memory.

[263]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[264]  Guillaume A. Rousselet,et al.  Processing of one, two or four natural scenes in humans: the limits of parallelism , 2004, Vision Research.

[265]  Idan Segev,et al.  Methods in Neuronal Modeling , 1988 .

[266]  M. Tovée,et al.  Information encoding and the responses of single neurons in the primate temporal visual cortex. , 1993, Journal of neurophysiology.

[267]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[268]  E T Rolls,et al.  Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[269]  Michael W. Spratling Learning viewpoint invariant perceptual representations from cluttered images , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[270]  Antonio Torralba,et al.  Sharing features: efficient boosting procedures for multiclass object detection , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[271]  J. Hegdé,et al.  Strategies of shape representation in macaque visual area V2 , 2003, Visual Neuroscience.

[272]  Charles E Connor,et al.  Underlying principles of visual shape selectivity in posterior inferotemporal cortex , 2004, Nature Neuroscience.

[273]  Charles Fredrick Cadieu,et al.  Modeling shape representation in visual cortex area V4 , 2005 .

[274]  J. K. Hietanen,et al.  The effects of lighting conditions on responses of cells selective for face views in the macaque temporal cortex , 2004, Experimental Brain Research.

[275]  Mark C. W. van Rossum,et al.  Stable Hebbian Learning from Spike Timing-Dependent Plasticity , 2000, The Journal of Neuroscience.

[276]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[277]  Thomas Serre,et al.  Component-based face detection , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[278]  S. Thorpe,et al.  Rapid categorization of natural images by rhesus monkeys , 1998, Neuroreport.

[279]  Pietro Perona,et al.  A Probabilistic Approach to Object Recognition Using Local Photometry and Global Geometry , 1998, ECCV.

[280]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[281]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[282]  George L. Gerstein,et al.  Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex , 1994, Nature.

[283]  Cordelia Schmid,et al.  A maximum entropy framework for part-based texture and object recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[284]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[285]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[286]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[287]  C. Koch,et al.  Visual Selective Behavior Can Be Triggered by a Feed-Forward Process , 2003, Journal of Cognitive Neuroscience.

[288]  Brian Leung,et al.  Component-based Car Detection in Street Scene Images , 2004 .

[289]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[290]  Yann LeCun,et al.  Learning processes in an asymmetric threshold network , 1986 .

[291]  B. Schiele,et al.  Combined Object Categorization and Segmentation With an Implicit Shape Model , 2004 .

[292]  J. Hegdé,et al.  Selectivity for Complex Shapes in Primate Visual Area V2 , 2000, The Journal of Neuroscience.

[293]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[294]  Konrad Paul Kording,et al.  How are complex cell properties adapted to the statistics of natural stimuli? , 2004, Journal of neurophysiology.

[295]  A. Georgopoulos,et al.  Modular organization of directionally tuned cells in the motor cortex: Is there a short-range order? , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[296]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[297]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[298]  David Mumford,et al.  On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[299]  D. V. van Essen,et al.  Spatial Attention Effects in Macaque Area V4 , 1997, The Journal of Neuroscience.

[300]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[301]  Guillaume A. Rousselet,et al.  Parallel processing in high-level categorization of natural images , 2002, Nature Neuroscience.

[302]  Y. Miyashita,et al.  Neuronal tuning to learned complex forms in vision. , 1994, Neuroreport.

[303]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[304]  Shimon Ullman,et al.  Computation of pattern invariance in brain-like structures , 1999, Neural Networks.

[305]  D Mumford,et al.  On the computational architecture of the neocortex. II. The role of cortico-cortical loops. , 1992, Biological cybernetics.

[306]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[307]  M. W. Brown,et al.  Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior temporal and rhinal cortex , 2004, Experimental Brain Research.

[308]  D. Perrett,et al.  Evidence accumulation in cell populations responsive to faces: an account of generalisation of recognition without mental transformations , 1998, Cognition.

[309]  J. Wolfe,et al.  Preattentive Object Files: Shapeless Bundles of Basic Features , 1997, Vision Research.

[310]  N. Logothetis,et al.  The Effect of Learning on the Function of Monkey Extrastriate Visual Cortex , 2004, PLoS biology.

[311]  E. Miller,et al.  Effects of Visual Experience on the Representation of Objects in the Prefrontal Cortex , 2000, Neuron.

[312]  H. Seung,et al.  Learning in Spiking Neural Networks by Reinforcement of Stochastic Synaptic Transmission , 2003, Neuron.

[313]  Takayuki Ito,et al.  Neocognitron: A neural network model for a mechanism of visual pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[314]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[315]  H H Bülthoff,et al.  Detection of animals in natural images using far peripheral vision , 2001, The European journal of neuroscience.

[316]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[317]  R. Desimone Face-Selective Cells in the Temporal Cortex of Monkeys , 1991, Journal of Cognitive Neuroscience.

[318]  J. Maunsell,et al.  Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing , 2000, Nature Neuroscience.

[319]  R. Shapley,et al.  A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Calpha. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[320]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[321]  Pietro Perona,et al.  Unsupervised Learning of Models for Recognition , 2000, ECCV.

[322]  Tieniu Tan,et al.  Robust Encoding of Local Ordinal Measures: A General Framework of Iris Recognition , 2004, ECCV Workshop BioAW.

[323]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[324]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[325]  J. A. Hirsch Synaptic physiology and receptive field structure in the early visual pathway of the cat. , 2003, Cerebral cortex.

[326]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[327]  C. Connor,et al.  Shape representation in area V4: position-specific tuning for boundary conformation. , 2001, Journal of neurophysiology.

[328]  P S Goldman-Rakic,et al.  Functional synergism between putative gamma-aminobutyrate-containing neurons and pyramidal neurons in prefrontal cortex. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[329]  Christoph von der Malsburg,et al.  The What and Why of Binding The Modeler’s Perspective , 1999, Neuron.

[330]  R. Desimone,et al.  A neural mechanism for working and recognition memory in inferior temporal cortex. , 1991, Science.

[331]  Martin A. Giese,et al.  Biophysiologically Plausible Implementations of the Maximum Operation , 2002, Neural Computation.

[332]  Stephen Grossberg,et al.  Contour Enhancement, Short Term Memory, and Constancies in Reverberating Neural Networks , 1973 .

[333]  G. Orban,et al.  Practising orientation identification improves orientation coding in V1 neurons , 2001, Nature.

[334]  M. Behrmann,et al.  Impact of learning on representation of parts and wholes in monkey inferotemporal cortex , 2002, Nature Neuroscience.

[335]  J. Pernier,et al.  Early signs of visual categorization for biological and non‐biological stimuli in humans , 2000, Neuroreport.

[336]  Leslie G. Ungerleider,et al.  Visual topography of area TEO in the macaque , 1991, The Journal of comparative neurology.

[337]  David J. Freedman,et al.  A Comparison of Primate Prefrontal and Inferior Temporal Cortices during Visual Categorization , 2003, The Journal of Neuroscience.

[338]  Lior Wolf,et al.  A Unified System For Object Detection, Texture Recognition, and Context Analysis Based on the Standard Model Feature Set , 2005, BMVC.

[339]  A. Morel,et al.  Segregated thalamocortical pathways to inferior parietal and inferotemporal cortex in macaque monkey , 1992, Visual Neuroscience.

[340]  Rajesh P. N. Rao,et al.  Probabilistic Models of the Brain: Perception and Neural Function , 2002 .

[341]  Robert Desimone,et al.  Impaired filtering of distracter stimuli by TE neurons following V4 and TEO lesions in macaques. , 2004, Cerebral cortex.

[342]  J. Daugman Two-dimensional spectral analysis of cortical receptive field profiles , 1980, Vision Research.

[343]  Javid Sadr,et al.  The Fidelity of Local Ordinal Encoding , 2001, NIPS.

[344]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[345]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[346]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[347]  Tomaso Poggio,et al.  Generalization in vision and motor control , 2004, Nature.

[348]  P. Perona,et al.  Rapid natural scene categorization in the near absence of attention , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[349]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[350]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[351]  T. Poggio,et al.  A feedforward theory of visual cortex accounts for human performance in rapid categorization , 2006 .

[352]  R. Vogels Categorization of complex visual images by rhesus monkeys. Part 2: single‐cell study , 1999, The European journal of neuroscience.

[353]  M. Tarr,et al.  Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects , 1999, Nature Neuroscience.

[354]  K. Rockland,et al.  Specific and columnar projection from area TEO to TE in the macaque inferotemporal cortex. , 1993, Cerebral cortex.

[355]  C. Gilbert,et al.  Learning to see: experience and attention in primary visual cortex , 2001, Nature Neuroscience.

[356]  M. Tovée Neuronal Processing: How fast is the speed of thought? , 1994, Current Biology.

[357]  Thomas Serre,et al.  Categorization by Learning and Combining Object Parts , 2001, NIPS.

[358]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[359]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression (PIE) database , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[360]  Antonio Torralba,et al.  Top-down control of visual attention in object detection , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[361]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[362]  P. H. Schiller,et al.  The role of the primate extrastriate area V4 in vision. , 1991, Science.

[363]  L. Abbott,et al.  Invariant visual responses from attentional gain fields. , 1997, Journal of neurophysiology.

[364]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[365]  Antonino Casile,et al.  Critical features for the recognition of biological motion. , 2005, Journal of vision.

[366]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[367]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[368]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[369]  E. Rolls,et al.  The Neurophysiology of Backward Visual Masking: Information Analysis , 1999, Journal of Cognitive Neuroscience.

[370]  G. Rousselet,et al.  Is it an animal? Is it a human face? Fast processing in upright and inverted natural scenes. , 2003, Journal of vision.

[371]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[372]  J. Bullier,et al.  Functional interactions between areas V1 and V2 in the monkey , 1996, Journal of Physiology-Paris.

[373]  M. Sur,et al.  Visual behaviour mediated by retinal projections directed to the auditory pathway , 2000, Nature.

[374]  S. Grossberg Contour Enhancement , Short Term Memory , and Constancies in Reverberating Neural Networks , 1973 .

[375]  Daniel Kersten,et al.  Bayesian models of object perception , 2003, Current Opinion in Neurobiology.

[376]  Rolls Et Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. , 1984 .

[377]  Tomaso Poggio,et al.  Face detection by humans and machines , 2004 .

[378]  M. Tovée,et al.  Processing speed in the cerebral cortex and the neurophysiology of visual masking , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[379]  I. Biederman Perceiving Real-World Scenes , 1972, Science.

[380]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.

[381]  M. Potter Meaning in visual search. , 1975, Science.

[382]  M. Potter,et al.  Recognition memory for briefly presented pictures: the time course of rapid forgetting. , 2002, Journal of experimental psychology. Human perception and performance.

[383]  D Purves,et al.  The distribution of oriented contours in the real world. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[384]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[385]  Tomaso A. Poggio,et al.  Pedestrian detection using wavelet templates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[386]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[387]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[388]  E. Miller,et al.  The prefontral cortex and cognitive control , 2000, Nature Reviews Neuroscience.

[389]  Edmund T. Rolls,et al.  Invariant recognition of feature combinations in the visual system , 2002, Biological Cybernetics.

[390]  R. Desimone,et al.  Prestriate afferents to inferior temporal cortex: an HRP study , 1980, Brain Research.

[391]  Peter Ftildidk Learning constancies for object perception , 2001 .

[392]  E Corthout,et al.  Timing of activity in early visual cortex as revealed by transcranial magnetic stimulation. , 1999, Neuroreport.

[393]  T Poggio,et al.  View-based models of 3D object recognition: invariance to imaging transformations. , 1995, Cerebral cortex.

[394]  S. Yamane,et al.  What facial features activate face neurons in the inferotemporal cortex of the monkey? , 2004, Experimental Brain Research.

[395]  N. Logothetis,et al.  View-dependent object recognition by monkeys , 1994, Current Biology.

[396]  Terrence J. Sejnowski,et al.  Slow Feature Analysis: Unsupervised Learning of Invariances , 2002, Neural Computation.

[397]  Keiji Tanaka,et al.  Functional architecture in monkey inferotemporal cortex revealed by in vivo optical imaging , 1998, Neuroscience Research.

[398]  A. J. Mistlin,et al.  Visual cells in the temporal cortex sensitive to face view and gaze direction , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[399]  J. Bullier,et al.  Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. , 2001, Journal of neurophysiology.

[400]  R. Desimone,et al.  Responses of Macaque Perirhinal Neurons during and after Visual Stimulus Association Learning , 1999, The Journal of Neuroscience.

[401]  T. Gawne The simultaneous coding of orientation and contrast in the responses of V1 complex cells , 2000, Experimental Brain Research.

[402]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[403]  Powen Ru,et al.  Multiresolution spectrotemporal analysis of complex sounds. , 2005, The Journal of the Acoustical Society of America.

[404]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[405]  Tomaso Poggio,et al.  A New Biologically Motivated Framework for Robust Object Recognition , 2004 .

[406]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[407]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[408]  Shimon Ullman,et al.  Combining Class-Specific Fragments for Object Classification , 1999, BMVC.

[409]  Keiji Tanaka Mechanisms of visual object recognition: monkey and human studies , 1997, Current Opinion in Neurobiology.