A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex

Abstract : We describe a quantitative theory to account for the computations performed by the feedforward path of the ventral stream of visual cortex and the local circuits implementing them. We show that a model instantiating the theory is capable of performing recognition on datasets of complex images at the level of human observers in rapid categorization tasks. We also show that the theory is consistent with (and in some case has predicted) several properties of neurons in V1, V4, IT and PFC. The theory seems sufficiently comprehensive, detailed and satisfactory to represent an interesting challenge for physiologists and modelers: either disprove its basic features or propose alternative theories of equivalent scope. The theory suggests a number of open questions for visual physiology and psychophysics.

[1]  R. K. Brown BIOPHYSICS , 1931 .

[2]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[3]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[4]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[5]  B. Katz,et al.  Further study of the role of calcium in synaptic transmission , 1970, The Journal of physiology.

[6]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[7]  Stephen Grossberg,et al.  Contour Enhancement, Short Term Memory, and Constancies in Reverberating Neural Networks , 1973 .

[8]  S. Grossberg Contour Enhancement , Short Term Memory , and Constancies in Reverberating Neural Networks , 1973 .

[9]  M. Potter Meaning in visual search. , 1975, Science.

[10]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. , 1976, Journal of neurophysiology.

[11]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[12]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. , 1976, Journal of neurophysiology.

[13]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[14]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[15]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[16]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[17]  Takayuki Ito,et al.  Neocognitron: A neural network model for a mechanism of visual pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[19]  A. J. Mistlin,et al.  Neurones responsive to faces in the temporal cortex: studies of functional organization, sensitivity to identity and relation to perception. , 1984, Human neurobiology.

[20]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  Leslie G. Ungerleider,et al.  Contour, color and shape analysis beyond the striate cortex , 1985, Vision Research.

[22]  A. J. Mistlin,et al.  Visual cells in the temporal cortex sensitive to face view and gaze direction , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[24]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[25]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[26]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[27]  Yann Le Cun,et al.  A Theoretical Framework for Back-Propagation , 1988 .

[28]  Y. Miyashita Neuronal correlate of visual associative long-term memory in the primate temporal cortex , 1988, Nature.

[29]  L. Palmer,et al.  The two-dimensional spatial structure of nonlinear subunits in the receptive fields of complex cells , 1990, Vision Research.

[30]  P. Lennie,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[31]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[32]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[33]  Peter Földiák,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Comput..

[34]  J. Leo van Hemmen,et al.  Temporal association , 1991 .

[35]  Y. Miyashita,et al.  Neural organization for the long-term memory of paired associates , 1991, Nature.

[36]  M. Stryker Temporal associations , 1991, Nature.

[37]  R. Desimone Face-Selective Cells in the Temporal Cortex of Monkeys , 1991, Journal of Cognitive Neuroscience.

[38]  D I Perrett,et al.  Organization and functions of cells responsive to faces in the temporal cortex. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  Geoffrey E. Hinton,et al.  Self-organizing neural network that discovers surfaces in random-dot stereograms , 1992, Nature.

[40]  F. Girosi,et al.  A Connection Between GRBF and MLP , 1992 .

[41]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[42]  H H Bülthoff,et al.  Psychophysical support for a two-dimensional view interpolation theory of object recognition. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D Mumford,et al.  On the computational architecture of the neocortex. II. The role of cortico-cortical loops. , 1992, Biological cybernetics.

[44]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  Leslie G. Ungerleider,et al.  The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  G. Wallis,et al.  Learning invariant responses to the natural transformations of objects , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[47]  David I. Perrett,et al.  Neurophysiology of shape processing , 1993, Image Vis. Comput..

[48]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[49]  M. Tovée,et al.  Processing speed in the cerebral cortex and the neurophysiology of visual masking , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[50]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[51]  N. Logothetis,et al.  View-dependent object recognition by monkeys , 1994, Current Biology.

[52]  D. Perrett,et al.  Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. , 1994, Cerebral cortex.

[53]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[54]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[55]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[56]  James V. Stone,et al.  A learning rule for extracting spatio-temporal invariances , 1995 .

[57]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[59]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[60]  D. C. Essen,et al.  Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. , 1996, Journal of neurophysiology.

[61]  M. Tovée,et al.  Representational capacity of face coding in monkeys. , 1996, Cerebral cortex.

[62]  Eero P. Simoncelli,et al.  Computational models of cortical visual processing. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[63]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[64]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[65]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[66]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[67]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[68]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[69]  E. Marder,et al.  Temporal Dynamics of Graded Synaptic Transmission in the Lobster Stomatogastric Ganglion , 1997, The Journal of Neuroscience.

[70]  G. Orban,et al.  Responses of macaque inferior temporal neurons to overlapping shapes. , 1997, Cerebral cortex.

[71]  C. Gross Brain, Vision, Memory: Tales in the History of Neuroscience , 1998 .

[72]  P. Lennie Single Units and Visual Cortical Organization , 1998, Perception.

[73]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[74]  R. Desimone,et al.  Responses of Neurons in Inferior Temporal Cortex during Memory- Guided Visual Search , 1998 .

[75]  Keiji Tanaka,et al.  Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. , 1998, Journal of neurophysiology.

[76]  Dana H. Ballard,et al.  Category Learning Through Multimodality Sensing , 1998, Neural Computation.

[77]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[78]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[79]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[80]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[81]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[82]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[83]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[84]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[85]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[86]  R. Vogels,et al.  Effect of image scrambling on inferior temporal cortical responses. , 1999, Neuroreport.

[87]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[88]  Tomaso Poggio,et al.  A Note on Object Class Representation and Categorical Perception , 1999 .

[89]  R. von der Heydt,et al.  Coding of Border Ownership in Monkey Visual Cortex , 2000, The Journal of Neuroscience.

[90]  Richard Hans Robert Hahnloser,et al.  Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit , 2000, Nature.

[91]  J. Maunsell,et al.  Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing , 2000, Nature Neuroscience.

[92]  Pietro Perona,et al.  Unsupervised Learning of Models for Recognition , 2000, ECCV.

[93]  E. Niebur,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2022 .

[94]  E. Miller,et al.  THE PREFRONTAL CORTEX AND COGNITIVE CONTROL , 2000 .

[95]  T. Gawne The simultaneous coding of orientation and contrast in the responses of V1 complex cells , 2000, Experimental Brain Research.

[96]  J. Bakin,et al.  Visual Responses in Monkey Areas V1 and V2 to Three-Dimensional Surface Configurations , 2000, The Journal of Neuroscience.

[97]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[98]  Edmund T. Rolls,et al.  A Model of Invariant Object Recognition in the Visual System: Learning Rules, Activation Functions, Lateral Inhibition, and Information-Based Performance Measures , 2000, Neural Computation.

[99]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[100]  E. Miller,et al.  The prefontral cortex and cognitive control , 2000, Nature Reviews Neuroscience.

[101]  C. Connor,et al.  Shape representation in area V4: position-specific tuning for boundary conformation. , 2001, Journal of neurophysiology.

[102]  Peter Ftildidk Learning constancies for object perception , 2001 .

[103]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[104]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[105]  R. Vogels,et al.  Inferotemporal neurons represent low-dimensional configurations of parameterized shapes , 2001, Nature Neuroscience.

[106]  Aapo Hyvärinen,et al.  A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images , 2001, Vision Research.

[107]  S. Thorpe,et al.  Seeking Categories in the Brain , 2001, Science.

[108]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[109]  Thomas Serre,et al.  Categorization by Learning and Combining Object Parts , 2001, NIPS.

[110]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[111]  P. Fldik,et al.  The Speed of Sight , 2001, Journal of Cognitive Neuroscience.

[112]  N. Sigala,et al.  Visual categorization shapes feature selectivity in the primate temporal cortex , 2002, Nature.

[113]  Martin A. Giese,et al.  Biophysiologically Plausible Implementations of the Maximum Operation , 2002, Neural Computation.

[114]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[115]  Gustavo Deco,et al.  Computational neuroscience of vision , 2002 .

[116]  Edmund T. Rolls,et al.  Invariant recognition of feature combinations in the visual system , 2002, Biological Cybernetics.

[117]  Terrence J. Sejnowski,et al.  Slow Feature Analysis: Unsupervised Learning of Invariances , 2002, Neural Computation.

[118]  M. Riesenhuber,et al.  Categorization in IT and PFC: Model and Experiments , 2002 .

[119]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[120]  Thomas Serre,et al.  On the Role of Object-Specific Features for Real World Object Recognition in Biological Vision , 2002, Biologically Motivated Computer Vision.

[121]  P. Perona,et al.  Rapid natural scene categorization in the near absence of attention , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[122]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[123]  Simon J. Thorpe,et al.  Ultra-Rapid Scene Categorization with a Wave of Spikes , 2002, Biologically Motivated Computer Vision.

[124]  David J. Freedman,et al.  Visual categorization and the primate prefrontal cortex: neurophysiology and behavior. , 2002, Journal of neurophysiology.

[125]  Michel Vidal-Naquet,et al.  Visual features of intermediate complexity and their use in classification , 2002, Nature Neuroscience.

[126]  T. Gawne,et al.  Responses of primate visual cortical V4 neurons to simultaneously presented stimuli. , 2002, Journal of neurophysiology.

[127]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[128]  C. Koch,et al.  Competition and selection during visual processing of natural scenes and objects. , 2003, Journal of vision.

[129]  Jennifer Louie A biological model of object recognition with feature learning , 2003 .

[130]  Maximilian Riesenhuber,et al.  Investigating shape representation in area V4 with HMAX: Orientation and Grating selectivities , 2003 .

[131]  Y. Frégnac,et al.  The “silent” surround of V1 receptive fields: theory and experiments , 2003, Journal of Physiology-Paris.

[132]  Y. Amit,et al.  An integrated network for invariant visual detection and recognition , 2003, Vision Research.

[133]  C. Koch,et al.  Visual Selective Behavior Can Be Triggered by a Feed-Forward Process , 2003, Journal of Cognitive Neuroscience.

[134]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[135]  Bevil R. Conway,et al.  Applicability of white-noise techniques to analyzing motion responses. , 2010, Journal of neurophysiology.

[136]  David J. Freedman,et al.  A Comparison of Primate Prefrontal and Inferior Temporal Cortices during Visual Categorization , 2003, The Journal of Neuroscience.

[137]  T. Poggio,et al.  Figure-ground discrimination by relative movement in the visual system of the fly , 1979, Biological cybernetics.

[138]  Tomaso Poggio,et al.  Intracellular measurements of spatial integration and the MAX operation in complex cells of the cat primary visual cortex. , 2004, Journal of neurophysiology.

[139]  E. Rolls,et al.  A Neurodynamical cortical model of visual attention and invariant object recognition , 2004, Vision Research.

[140]  Thomas Serre,et al.  Realistic Modeling of Simple and Complex Cell Tuning in the HMAX Model, and Implications for Invariant Object Recognition in Cortex , 2004 .

[141]  M. Riesenhuber,et al.  Face processing in humans is compatible with a simple shape–based model of vision , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[142]  L. Abbott,et al.  Synaptic computation , 2004, Nature.

[143]  A. Torralba,et al.  Sharing features: efficient boosting procedures for multiclass object detection , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[144]  D. Ringach Mapping receptive fields in primary visual cortex , 2004, The Journal of physiology.

[145]  T. Poggio,et al.  Selectivity of Local Field Potentials in Macaque Inferior Temporal Cortex , 2004 .

[146]  Gabriel Kreiman,et al.  Neural coding: computational and biophysical perspectives , 2004, Physics of Life Reviews.

[147]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[148]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[149]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[150]  T. Sato,et al.  Interactions of visual stimuli in the receptive fields of inferior temporal neurons in awake macaques , 2004, Experimental Brain Research.

[151]  Tomaso Poggio,et al.  A New Biologically Motivated Framework for Robust Object Recognition , 2004 .

[152]  Brian Leung,et al.  Component-based Car Detection in Street Scene Images , 2004 .

[153]  Doris Y. Tsao,et al.  Complex and dynamic receptive field structure in macaque cortical area V4d , 2004 .

[154]  Tomaso Poggio,et al.  Generalization in vision and motor control , 2004, Nature.

[155]  J. Hawkins,et al.  On Intelligence , 2004 .

[156]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[157]  Dario L Ringach,et al.  Haphazard wiring of simple receptive fields and orientation columns in visual cortex. , 2004, Journal of neurophysiology.

[158]  Kunihiko Fukushima,et al.  A neural network model for selective attention in visual pattern recognition , 1986, Biological Cybernetics.

[159]  J. K. Hietanen,et al.  The effects of lighting conditions on responses of cells selective for face views in the macaque temporal cortex , 2004, Experimental Brain Research.

[160]  Y. LeCun,et al.  Learning methods for generic object recognition with invariance to pose and lighting , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[161]  Thomas Serre,et al.  Object recognition with features inspired by visual cortex , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[162]  Lior Wolf,et al.  A Unified System For Object Detection, Texture Recognition, and Context Analysis Based on the Standard Model Feature Set , 2005, BMVC.

[163]  Martin A. Giese,et al.  Learning Features of Intermediate Complexity for the Recognition of Biological Motion , 2005, ICANN.

[164]  Michael W. Spratling Learning viewpoint invariant perceptual representations from cluttered images , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[165]  E. Rolls,et al.  Object perception in natural scenes: encoding by inferior temporal cortex simultaneously recorded neurons. , 2005, Journal of neurophysiology.

[166]  M. Sur,et al.  Invariant computations in local cortical networks with balanced excitation and inhibition , 2005, Nature Neuroscience.

[167]  James J DiCarlo,et al.  Multiple Object Response Normalization in Monkey Inferotemporal Cortex , 2005, The Journal of Neuroscience.

[168]  Gabriel Kreiman,et al.  Ultra-fast Object Recognition from Few Spikes , 2005 .

[169]  Charles Fredrick Cadieu,et al.  Modeling shape representation in visual cortex area V4 , 2005 .

[170]  Thomas Serre,et al.  Modeling feature sharing between object detection and top-down attention , 2005 .

[171]  T. Poggio,et al.  A neuronal circuitry for relative movement discrimination by the visual system of the fly , 1981, Naturwissenschaften.

[172]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[173]  Ronald A. Rensink,et al.  Change blindness: past, present, and future , 2005, Trends in Cognitive Sciences.

[174]  Antonio Torralba,et al.  Building the gist of a scene: the role of global image features in recognition. , 2006, Progress in brain research.

[175]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[176]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .