Visual categorization and the primate prefrontal cortex: neurophysiology and behavior.

The ability to group stimuli into meaningful categories is a fundamental cognitive process. To explore its neuronal basis, we trained monkeys to categorize computer-generated stimuli as "cats" and "dogs." A morphing system was used to systematically vary stimulus shape and precisely define a category boundary. Psychophysical testing and analysis of eye movements suggest that the monkeys categorized the stimuli by attending to multiple stimulus features. Neuronal activity in the lateral prefrontal cortex reflected the category of visual stimuli and changed with learning when a monkey was retrained with the same stimuli assigned to new categories. Further, many neurons showed activity that appeared to reflect the monkey's decision about whether two stimuli were from the same category or not. These results suggest that the lateral prefrontal cortex is an important part of the neuronal circuitry underlying category learning and category-based behaviors.

[1]  H. Klüver,et al.  An analysis of certain effects of bilateral temporal lobectomy in the rhesus monkey, with special reference to "psychic blindness." , 1938 .

[2]  H. Klüver,et al.  PRELIMINARY ANALYSIS OF FUNCTIONS OF THE TEMPORAL LOBES IN MONKEYS , 1939 .

[3]  K H PRIBRAM,et al.  A behavioral analysis of the organization of the parieto‐temporo‐preoccipital cortex , 1950, The Journal of comparative neurology.

[4]  K. Pribram,et al.  Visual discrimination performance following partial ablations of the temporal lobe. I. Ventral vs. lateral. , 1954, Journal of comparative and physiological psychology.

[5]  M. Mishkin Visual discrimination performance following partial ablations of the temporal lobe. II. Ventral surface vs. hippocampus. , 1954, Journal of comparative and physiological psychology.

[6]  M MISHKIN,et al.  Effects of small frontal lesions on delayed alternation in monkeys. , 1957, Journal of neurophysiology.

[7]  F. Plum Handbook of Physiology. , 1960 .

[8]  C. Gross,et al.  Evidence for dissociation of impairment on auditory discrimination and delayed response following lateral frontal lesions in monkeys. , 1962, Experimental neurology.

[9]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[10]  A M Liberman,et al.  Perception of the speech code. , 1967, Psychological review.

[11]  Mortimer Mishkin,et al.  A re-examination of the effects of frontal lesions on object alternation , 1969 .

[12]  H. E. Rosvold,et al.  Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. , 1970, Experimental neurology.

[13]  H. E. Rosvold,et al.  Analysis of the delayed-alternation deficit produced by dorsolateral prefrontal lesions in the rhesus monkey. , 1971, Journal of comparative and physiological psychology.

[14]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[15]  C. Gross Visual Functions of Inferotemporal Cortex , 1973 .

[16]  Richard Passingham,et al.  Delayed matching after selective prefrontal lesions in monkeys (Macaca mulatta) , 1975, Brain Research.

[17]  M. Mishkin,et al.  Non-spatial memory after selective prefrontal lesions in monkeys , 1978, Brain Research.

[18]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[19]  G. V. Van Hoesen,et al.  Prosopagnosia , 1982, Neurology.

[20]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[21]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  V. Mountcastle,et al.  Higher functions of the brain , 1987 .

[23]  W. Roberts,et al.  Concept learning at different levels of abstraction by pigeons, monkeys, and people. , 1988 .

[24]  Y. Miyashita Neuronal correlate of visual associative long-term memory in the primate temporal cortex , 1988, Nature.

[25]  G. Orban,et al.  How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  J. Fuster,et al.  Prefrontal Cortex and the Bridging of Temporal Gaps in the Perception‐Action Cycle , 1990, Annals of the New York Academy of Sciences.

[27]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[28]  M. Taussig The Nervous System , 1991 .

[29]  D I Perrett,et al.  Organization and functions of cells responsive to faces in the temporal cortex. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[30]  P. Goldman-Rakic,et al.  Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic "scotomas" , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  R. Desimone,et al.  Activity of neurons in anterior inferior temporal cortex during a short- term memory task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[33]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[34]  F. Keil,et al.  Categorical effects in the perception of faces , 1995, Cognition.

[35]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[36]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[37]  Tomaso Poggio,et al.  Image Representations for Visual Learning , 1996, Science.

[38]  R. Wyttenbach,et al.  Categorical Perception of Sound Frequency by Crickets , 1996, Science.

[39]  T. Robbins,et al.  Dissociation in prefrontal cortex of affective and attentional shifts , 1996, Nature.

[40]  R. Desimone,et al.  Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque , 1996, The Journal of Neuroscience.

[41]  J. Fuster The Prefrontal Cortex , 1997 .

[42]  Keiji Tanaka,et al.  Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. , 1998, Journal of neurophysiology.

[43]  Altah M Nichols,et al.  A screw microdrive for adjustable chronic unit recording in monkeys , 1998, Journal of Neuroscience Methods.

[44]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[45]  E. Miller,et al.  Neural Activity in the Primate Prefrontal Cortex during Associative Learning , 1998, Neuron.

[46]  S. Thorpe,et al.  Rapid categorization of natural images by rhesus monkeys , 1998, Neuroreport.

[47]  S. Wise,et al.  Rule-dependent neuronal activity in the prefrontal cortex , 1999, Experimental Brain Research.

[48]  R. Vogels Categorization of complex visual images by rhesus monkeys. Part 1: behavioural study , 1999, The European journal of neuroscience.

[49]  M. Shadlen,et al.  Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque , 1999, Nature Neuroscience.

[50]  P S Goldman-Rakic,et al.  Face-selective neurons during passive viewing and working memory performance of rhesus monkeys: evidence for intrinsic specialization of neuronal coding. , 1999, Cerebral cortex.

[51]  Y. Miyashita,et al.  Top-down signal from prefrontal cortex in executive control of memory retrieval , 1999, Nature.

[52]  E. Miller,et al.  Effects of Visual Experience on the Representation of Objects in the Prefrontal Cortex , 2000, Neuron.

[53]  C. Koch,et al.  Category-specific visual responses of single neurons in the human medial temporal lobe , 2000, Nature Neuroscience.

[54]  E. Miller,et al.  THE PREFRONTAL CORTEX AND COGNITIVE CONTROL , 2000 .

[55]  James K. Kroger,et al.  Cross-modal and cross-temporal association in neurons of frontal cortex , 2000, Nature.

[56]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[57]  E. Miller,et al.  The prefontral cortex and cognitive control , 2000, Nature Reviews Neuroscience.

[58]  Shaul Hochstein,et al.  Macaque monkeys categorize images by their ordinal number , 2000, Nature.

[59]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[60]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[61]  K. C. Anderson,et al.  Single neurons in prefrontal cortex encode abstract rules , 2001, Nature.

[62]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[63]  Leslie G. Ungerleider,et al.  Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys , 2004, Experimental Brain Research.

[64]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[65]  Christian R. Shelton,et al.  Morphable Surface Models , 2000, International Journal of Computer Vision.