Fast Readout of Object Identity from Macaque Inferior Temporal Cortex

Understanding the brain computations leading to object recognition requires quantitative characterization of the information represented in inferior temporal (IT) cortex. We used a biologically plausible, classifier-based readout technique to investigate the neural coding of selectivity and invariance at the IT population level. The activity of small neuronal populations (∼100 randomly selected cells) over very short time intervals (as small as 12.5 milliseconds) contained unexpectedly accurate and robust information about both object “identity” and “category.” This information generalized over a range of object positions and scales, even for novel objects. Coarse information about position and scale could also be read out from the same population.

[1]  R. Wurtz,et al.  Visual responses of inferior temporal neurons in awake rhesus monkey. , 1983, Journal of neurophysiology.

[2]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[4]  E. Rolls Neural organization of higher visual functions , 1991, Current Opinion in Neurobiology.

[5]  M. Young,et al.  Sparse population coding of faces in the inferotemporal cortex. , 1992, Science.

[6]  C. Gross,et al.  Neural ensemble coding in inferior temporal cortex. , 1994, Journal of neurophysiology.

[7]  L F Abbott,et al.  Decoding neuronal firing and modelling neural networks , 1994, Quarterly Reviews of Biophysics.

[8]  Minami Ito,et al.  Size and position invariance of neuronal responses in monkey inferotemporal cortex. , 1995, Journal of neurophysiology.

[9]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[10]  M. Tovée,et al.  Representational capacity of face coding in monkeys. , 1996, Cerebral cortex.

[11]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[12]  E. Rolls,et al.  INVARIANT FACE AND OBJECT RECOGNITION IN THE VISUAL SYSTEM , 1997, Progress in Neurobiology.

[13]  S. Thorpe,et al.  Rapid categorization of natural images by rhesus monkeys , 1998, Neuroreport.

[14]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[15]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[16]  R. Vogels Categorization of complex visual images by rhesus monkeys. Part 2: single‐cell study , 1999, The European journal of neuroscience.

[17]  Leslie G. Ungerleider,et al.  Distributed representation of objects in the human ventral visual pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Y. Miyashita,et al.  Top-down signal from prefrontal cortex in executive control of memory retrieval , 1999, Nature.

[19]  A. Zador,et al.  Neural representation and the cortical code. , 2000, Annual review of neuroscience.

[20]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[21]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[22]  P. Fldik,et al.  The Speed of Sight , 2001, Journal of Cognitive Neuroscience.

[23]  S. Thorpe,et al.  Surfing a spike wave down the ventral stream , 2002, Vision Research.

[24]  R. Andersen,et al.  Neural prosthetic control signals from plan activity , 2003, Neuroreport.

[25]  R. Zemel,et al.  Inference and computation with population codes. , 2003, Annual review of neuroscience.

[26]  Tomaso Poggio,et al.  Generalization in vision and motor control , 2004, Nature.

[27]  Charles E Connor,et al.  Underlying principles of visual shape selectivity in posterior inferotemporal cortex , 2004, Nature Neuroscience.

[28]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[29]  E. Rolls,et al.  Object perception in natural scenes: encoding by inferior temporal cortex simultaneously recorded neurons. , 2005, Journal of neurophysiology.

[30]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[31]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.