How parallel is visual processing in the ventral pathway?

[1]  Ichiro Fujita,et al.  Presumed inhibitory neurons in the macaque inferior temporal cortex: visual response properties and functional interactions with adjacent neurons. , 2004, Journal of neurophysiology.

[2]  Guillaume A. Rousselet,et al.  Processing of one, two or four natural scenes in humans: the limits of parallelism , 2004, Vision Research.

[3]  E. Rolls,et al.  A Neurodynamical cortical model of visual attention and invariant object recognition , 2004, Vision Research.

[4]  A. Maravita,et al.  Tools for the body (schema) , 2004, Trends in Cognitive Sciences.

[5]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[6]  T. Sato,et al.  Interactions of visual stimuli in the receptive fields of inferior temporal neurons in awake macaques , 2004, Experimental Brain Research.

[7]  C. Koch,et al.  Visual Search and Dual Tasks Reveal Two Distinct Attentional Resources , 2004, Journal of Cognitive Neuroscience.

[8]  F. Hamker The reentry hypothesis: linking eye movements to visual perception. , 2003, Journal of vision.

[9]  Heiko Wersing,et al.  Learning Optimized Features for Hierarchical Models of Invariant Object Recognition , 2003, Neural Computation.

[10]  David J. Freedman,et al.  A Comparison of Primate Prefrontal and Inferior Temporal Cortices during Visual Categorization , 2003, The Journal of Neuroscience.

[11]  J. Maunsell,et al.  Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. , 2003, Journal of neurophysiology.

[12]  Leslie G. Ungerleider,et al.  Posterior parietal cortex and the filtering of distractors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. Desimone,et al.  Interacting Roles of Attention and Visual Salience in V4 , 2003, Neuron.

[14]  J. Bullier,et al.  Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? , 2003, Journal of Physiology-Paris.

[15]  S. Thorpe,et al.  Taking the MAX from neuronal responses , 2003, Trends in Cognitive Sciences.

[16]  Tai Sing Lee,et al.  Computations in the early visual cortex , 2003, Journal of Physiology-Paris.

[17]  Geoffrey F Woodman,et al.  Serial deployment of attention during visual search. , 2003, Journal of experimental psychology. Human perception and performance.

[18]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[19]  Edmund T Rolls,et al.  The Receptive Fields of Inferior Temporal Cortex Neurons in Natural Scenes , 2003, The Journal of Neuroscience.

[20]  Keiji Tanaka Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. , 2003, Cerebral cortex.

[21]  H. Swadlow Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. , 2003, Cerebral cortex.

[22]  Martin A. Giese,et al.  Biophysiologically Plausible Implementations of the Maximum Operation , 2002, Neural Computation.

[23]  T. Gawne,et al.  Responses of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening. , 2002, Journal of neurophysiology.

[24]  M. Behrmann,et al.  Impact of learning on representation of parts and wholes in monkey inferotemporal cortex , 2002, Nature Neuroscience.

[25]  Claus Bundesen,et al.  Serial Attention Mechanisms in Visual Search: A Direct Behavioral Demonstration , 2002, Journal of Cognitive Neuroscience.

[26]  S. Thorpe,et al.  Surfing a spike wave down the ventral stream , 2002, Vision Research.

[27]  T. Gawne,et al.  Responses of primate visual cortical V4 neurons to simultaneously presented stimuli. , 2002, Journal of neurophysiology.

[28]  Jeffrey D Schall,et al.  The neural selection and control of saccades by the frontal eye field. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[29]  Guillaume A. Rousselet,et al.  Parallel processing in high-level categorization of natural images , 2002, Nature Neuroscience.

[30]  P. Perona,et al.  Rapid natural scene categorization in the near absence of attention , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Gottlieb Parietal mechanisms of target representation , 2002, Current Opinion in Neurobiology.

[32]  T. Poggio,et al.  Neural mechanisms of object recognition , 2002, Current Opinion in Neurobiology.

[33]  Guy N Elston,et al.  Cortical heterogeneity: Implications for visual processing and polysensory integration , 2002, Journal of neurocytology.

[34]  N. Sigala,et al.  Visual categorization shapes feature selectivity in the primate temporal cortex , 2002, Nature.

[35]  H. Tamura,et al.  Contribution of GABAergic inhibition to receptive field structures of monkey inferior temporal neurons. , 2002, Cerebral cortex.

[36]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[37]  Edmund T. Rolls,et al.  Invariant recognition of feature combinations in the visual system , 2002, Biological Cybernetics.

[38]  Y. Yamane,et al.  Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns , 2001, Nature Neuroscience.

[39]  J Duncan,et al.  Responses of neurons in macaque area V4 during memory-guided visual search. , 2001, Cerebral cortex.

[40]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[41]  H. Tamura,et al.  Visual response properties of cells in the ventral and dorsal parts of the macaque inferotemporal cortex. , 2001, Cerebral cortex.

[42]  J. Driver,et al.  Perceptual awareness and its loss in unilateral neglect and extinction , 2001, Cognition.

[43]  David L. Sheinberg,et al.  Noticing Familiar Objects in Real World Scenes: The Role of Temporal Cortical Neurons in Natural Vision , 2001, The Journal of Neuroscience.

[44]  S. Thorpe,et al.  Seeking Categories in the Brain , 2001, Science.

[45]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[46]  G. V. Simpson,et al.  Flow of activation from V1 to frontal cortex in humans , 2001, Experimental Brain Research.

[47]  P. Fldik,et al.  The Speed of Sight , 2001, Journal of Cognitive Neuroscience.

[48]  R. Vogels,et al.  Spatial sensitivity of macaque inferior temporal neurons , 2000, The Journal of comparative neurology.

[49]  I. Fujita,et al.  Neuronal mechanisms of selectivity for object features revealed by blocking inhibition in inferotemporal cortex , 2000, Nature Neuroscience.

[50]  E. Rolls Functions of the Primate Temporal Lobe Cortical Visual Areas in Invariant Visual Object and Face Recognition , 2000, Neuron.

[51]  B. C. Motter,et al.  Cortical image density determines the probability of target discovery during active search , 2000, Vision Research.

[52]  Victor A. F. Lamme,et al.  The implementation of visual routines , 2000, Vision Research.

[53]  Preeti Verghese,et al.  The psychophysics of visual search , 2000, Vision Research.

[54]  J L Ringo,et al.  Eye position‐sensitive units in hippocampal formation and in inferotemporal cortex of the Macaque monkey , 2000, The European journal of neuroscience.

[55]  S Edelman,et al.  (Coarse coding of shape fragments) + (retinotopy) approximately = representation of structure. , 2000, Spatial vision.

[56]  Nathan Intrator,et al.  (coarse Coding of Shape Fragments) (retinotopy) Representation of Structure , 2000 .

[57]  Y. Miyashita,et al.  Top-down signal from prefrontal cortex in executive control of memory retrieval , 1999, Nature.

[58]  Christoph von der Malsburg,et al.  The What and Why of Binding The Modeler’s Perspective , 1999, Neuron.

[59]  T. Poggio,et al.  Are Cortical Models Really Bound by the “Binding Problem”? , 1999, Neuron.

[60]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[61]  G. Orban,et al.  Shape interactions in macaque inferior temporal neurons. , 1999, Journal of neurophysiology.

[62]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[63]  R. Desimone,et al.  Responses of Neurons in Inferior Temporal Cortex during Memory- Guided Visual Search , 1998 .

[64]  Peter Földiák,et al.  Sparse coding in the primate cortex , 1998 .

[65]  M. Carrasco,et al.  The contribution of covert attention to the set-size and eccentricity effects in visual search. , 1998, Journal of experimental psychology. Human perception and performance.

[66]  E. Rolls,et al.  INVARIANT FACE AND OBJECT RECOGNITION IN THE VISUAL SYSTEM , 1997, Progress in Neurobiology.

[67]  Peter H. Schiller,et al.  Past and Present Ideas About How the Visual Scene Is Analyzed by the Brain , 1997 .

[68]  B. Richmond,et al.  Latency: another potential code for feature binding in striate cortex. , 1996, Journal of neurophysiology.

[69]  M. Carrasco,et al.  The eccentricity effect: Target eccentricity affects performance on conjunction searches , 1995, Perception & psychophysics.

[70]  J. Bullier,et al.  Parallel versus serial processing: new vistas on the distributed organization of the visual system , 1995, Current Opinion in Neurobiology.

[71]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[72]  W. Geisler,et al.  Separation of low-level and high-level factors in complex tasks: visual search. , 1995, Psychological review.

[73]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[75]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[76]  Minami Ito,et al.  Size and position invariance of neuronal responses in monkey inferotemporal cortex. , 1995, Journal of neurophysiology.

[77]  R. Desimone,et al.  Inferior temporal mechanisms for invariant object recognition. , 1994, Cerebral cortex.

[78]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[79]  Steven A. Hillyard,et al.  Independent Attentional Scanning in the Separated Hemispheres of Split-Brain Patients , 1994, Journal of Cognitive Neuroscience.

[80]  D. Perrett,et al.  Time course of neural responses discriminating different views of the face and head. , 1992, Journal of neurophysiology.

[81]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[82]  Leslie G. Ungerleider,et al.  Visual topography of area TEO in the macaque , 1991, The Journal of comparative neurology.

[83]  D. B. Bender,et al.  Visual activation of neurons in inferotemporal cortex depends on striate cortex and forebrain commissures. , 1975, Journal of neurophysiology.