Gaussian process dynamic programming

[1]  Carl E. Rasmussen,et al.  Gaussian Processes for Machine Learning , 2003, Adaptive computation and machine learning.

[2]  Dimitri P. Bertsekas Neuro-Dynamic Programming , 2009, Encyclopedia of Optimization.

[3]  Carl E. Rasmussen,et al.  Model-Based Reinforcement Learning with Continuous States and Actions , 2008, ESANN.

[4]  Carl E. Rasmussen,et al.  Probabilistic Inference for Fast Learning in Control , 2008, EWRL.

[5]  Dieter Fox,et al.  GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models , 2009, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  J. Peters,et al.  Approximate dynamic programming with Gaussian processes , 2008, 2008 American Control Conference.

[7]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[8]  KrauseAndreas,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008 .

[9]  Stefan Schaal,et al.  Reinforcement learning of motor skills with policy gradients , 2008, Neural Networks.

[10]  KasabovNikola,et al.  2008 Special issue , 2008 .

[11]  Stefan Schaal,et al.  Learning to Control in Operational Space , 2008, Int. J. Robotics Res..

[12]  Stefan Schaal,et al.  Natural Actor-Critic , 2003, ECML.

[13]  Wolfram Burgard,et al.  Active Policy Learning for Robot Planning and Exploration under Uncertainty , 2008 .

[14]  Dieter Fox,et al.  GP-UKF: Unscented kalman filters with Gaussian process prediction and observation models , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Nando de Freitas,et al.  Active Policy Learning for Robot Planning and Exploration under Uncertainty , 2007, Robotics: Science and Systems.

[16]  Dieter Fox,et al.  Gaussian Processes and Reinforcement Learning for Identification and Control of an Autonomous Blimp , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[17]  Mohammad Ghavamzadeh,et al.  Bayesian Policy Gradient Algorithms , 2006, NIPS.

[18]  Tobias Pfingsten,et al.  Bayesian Active Learning for Sensitivity Analysis , 2006, ECML.

[19]  Liming Xiang,et al.  Kernel-Based Reinforcement Learning , 2006, ICIC.

[20]  Larry Wasserman,et al.  All of Nonparametric Statistics (Springer Texts in Statistics) , 2006 .

[21]  Malte Kuß,et al.  Gaussian process models for robust regression, classification, and reinforcement learning , 2006 .

[22]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[23]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[24]  Yuhong Yang,et al.  Information Theory, Inference, and Learning Algorithms , 2005 .

[25]  Pierre Geurts,et al.  Tree-Based Batch Mode Reinforcement Learning , 2005, J. Mach. Learn. Res..

[26]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[27]  L. Wasserman All of Nonparametric Statistics , 2005 .

[28]  Martin A. Riedmiller Neural Fitted Q Iteration - First Experiences with a Data Efficient Neural Reinforcement Learning Method , 2005, ECML.

[29]  Shie Mannor,et al.  Reinforcement learning with Gaussian processes , 2005, ICML.

[30]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 2005, IEEE Transactions on Neural Networks.

[31]  Dimitri P. Bertsekas,et al.  Dynamic programming and optimal control, 3rd Edition , 2005 .

[32]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[33]  Carl E. Rasmussen,et al.  Gaussian Processes in Reinforcement Learning , 2003, NIPS.

[34]  J. Kocijan,et al.  Predictive control with Gaussian process models , 2003, The IEEE Region 8 EUROCON 2003. Computer as a Tool..

[35]  Agathe Girard,et al.  Adaptive, Cautious, Predictive control with Gaussian Process Priors , 2003 .

[36]  Shie Mannor,et al.  Bayes Meets Bellman: The Gaussian Process Approach to Temporal Difference Learning , 2003, ICML.

[37]  Daniel Sbarbaro,et al.  Nonlinear adaptive control using non-parametric Gaussian Process prior models , 2002 .

[38]  Carl E. Rasmussen,et al.  Bayesian Monte Carlo , 2002, NIPS.

[39]  Claudio De Persis,et al.  Proceedings of the 15th IFAC World Congress , 2002 .

[40]  C. Rasmussen,et al.  Gaussian Process Priors with Uncertain Inputs - Application to Multiple-Step Ahead Time Series Forecasting , 2002, NIPS.

[41]  T. Başar A New Approach to Linear Filtering and Prediction Problems , 2001 .

[42]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[43]  Kenji Doya,et al.  Reinforcement Learning in Continuous Time and Space , 2000, Neural Computation.

[44]  W. Godwin Article in Press , 2000 .

[45]  Martin A. Riedmiller Concepts and Facilities of a Neural Reinforcement Learning Control Architecture for Technical Process Control , 1999, Neural Computing & Applications.

[46]  David J. C. MacKay,et al.  Comparison of Approximate Methods for Handling Hyperparameters , 1999, Neural Computation.

[47]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[48]  Thomas G. Dietterich Adaptive computation and machine learning , 1998 .

[49]  Stefan Schaal,et al.  Robot Learning From Demonstration , 1997, ICML.

[50]  Christopher G. Atkeson,et al.  A comparison of direct and model-based reinforcement learning , 1997, Proceedings of International Conference on Robotics and Automation.

[51]  Geoffrey E. Hinton,et al.  Evaluation of gaussian processes and other methods for non-linear regression , 1997 .

[52]  Leslie Pack Kaelbling,et al.  Recent Advances in Reinforcement Learning , 1996, Springer US.

[53]  Carl E. Rasmussen,et al.  Gaussian Processes for Regression , 1995, NIPS.

[54]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[55]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control , 1995 .

[56]  Geoffrey J. Gordon Stable Function Approximation in Dynamic Programming , 1995, ICML.

[57]  Christopher G. Atkeson,et al.  Using Local Trajectory Optimizers to Speed Up Global Optimization in Dynamic Programming , 1993, NIPS.

[58]  Pavel Brazdil,et al.  Proceedings of the European Conference on Machine Learning , 1993 .

[59]  Heinrich Braun,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[60]  David J. C. MacKay,et al.  Information-Based Objective Functions for Active Data Selection , 1992, Neural Computation.

[61]  I. Verdinelli,et al.  Bayesian designs for maximizing information and outcome , 1992 .

[62]  A. O'Hagan Bayes–Hermite quadrature , 1991 .

[63]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[64]  Stephen José Hanson,et al.  In Advances in Neural Information Processing Systems , 1990, NIPS 1990.

[65]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[66]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Vol. II , 1976 .

[67]  G. Matheron The intrinsic random functions and their applications , 1973, Advances in Applied Probability.

[68]  R. Bellman Dynamic Programming , 1966, Science.

[69]  L. Goddard Information Theory , 1962, Nature.

[70]  R. Howard Dynamic Programming and Markov Processes , 1960 .

[71]  January , 1890, The Hospital.