Natural patterns of activity and long-term synaptic plasticity

[1]  Rajesh P. N. Rao,et al.  Predictive learning of temporal sequences in recurrent neocortical circuits. , 2001, Novartis Foundation symposium.

[2]  T. Sejnowski,et al.  Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5–2 Hz), theta (5–12 Hz), and gamma (35–70 Hz) bands , 2000, Hippocampus.

[3]  Robert E. Hampson,et al.  Distribution of spatial and nonspatial information in dorsal hippocampus , 1999, Nature.

[4]  T. Sejnowski,et al.  The Book of Hebb , 1999, Neuron.

[5]  G Buzsáki,et al.  Hebbian modification of a hippocampal population pattern in the rat , 1999, The Journal of physiology.

[6]  J. Csicsvari,et al.  Replay and Time Compression of Recurring Spike Sequences in the Hippocampus , 1999, The Journal of Neuroscience.

[7]  G. Bi,et al.  Distributed synaptic modification in neural networks induced by patterned stimulation , 1999, Nature.

[8]  Nace L. Golding,et al.  Dendritic Calcium Spike Initiation and Repolarization Are Controlled by Distinct Potassium Channel Subtypes in CA1 Pyramidal Neurons , 1999, The Journal of Neuroscience.

[9]  S. J. Martin,et al.  Reversible neural inactivation reveals hippocampal participation in several memory processes , 1999, Nature Neuroscience.

[10]  H Wang,et al.  Priming-induced shift in synaptic plasticity in the rat hippocampus. , 1999, Journal of neurophysiology.

[11]  Y. Isomura,et al.  Action potential-induced dendritic calcium dynamics correlated with synaptic plasticity in developing hippocampal pyramidal cells. , 1999, Journal of neurophysiology.

[12]  O. Paulsen,et al.  Rapid report: postsynaptic bursting is essential for 'Hebbian' induction of associative long-term potentiation at excitatory synapses in rat hippocampus. , 1999, The Journal of physiology.

[13]  Joseph R. Madsen,et al.  Human theta oscillations exhibit task dependence during virtual maze navigation , 1999, Nature.

[14]  Daniel Johnston,et al.  Regulation of back-propagating action potentials in hippocampal neurons , 1999, Current Opinion in Neurobiology.

[15]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[16]  B. McNaughton,et al.  Reactivation of Hippocampal Cell Assemblies: Effects of Behavioral State, Experience, and EEG Dynamics , 1999, The Journal of Neuroscience.

[17]  Roberto Malinow,et al.  Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated , 1999, Nature.

[18]  D. Linden The Return of the Spike Postsynaptic Action Potentials and the Induction of LTP and LTD , 1999, Neuron.

[19]  H. Eichenbaum,et al.  The global record of memory in hippocampal neuronal activity , 1999, Nature.

[20]  J. Lisman Relating Hippocampal Circuitry to Function Recall of Memory Sequences by Reciprocal Dentate–CA3 Interactions , 1999, Neuron.

[21]  T. Bliss,et al.  Single Synaptic Events Evoke NMDA Receptor–Mediated Release of Calcium from Internal Stores in Hippocampal Dendritic Spines , 1999, Neuron.

[22]  J. Csicsvari,et al.  Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat , 1999, The Journal of Neuroscience.

[23]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[24]  R. Morris,et al.  Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein , 1998, Nature.

[25]  Sen Song,et al.  Temporally Asymmetric Hebbian Learning, Spike liming and Neural Response Variability , 1998, NIPS.

[26]  R. Morris,et al.  Impaired spatial learning after saturation of long-term potentiation. , 1998, Science.

[27]  Mark J. Thomas,et al.  Postsynaptic Complex Spike Bursting Enables the Induction of LTP by Theta Frequency Synaptic Stimulation , 1998, The Journal of Neuroscience.

[28]  M. Moser,et al.  Distributed Encoding and Retrieval of Spatial Memory in the Hippocampus , 1998, The Journal of Neuroscience.

[29]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[30]  B. Sakmann,et al.  Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[31]  John Lisman,et al.  Neuroscience: What makes the brain's tickers tock , 1998, Nature.

[32]  O. Paulsen,et al.  Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro , 1998, Nature.

[33]  D. Clapham,et al.  NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation , 1998, Nature Neuroscience.

[34]  G. Buzsáki,et al.  Dendritic Spikes Are Enhanced by Cooperative Network Activity in the Intact Hippocampus , 1998, The Journal of Neuroscience.

[35]  U. Frey,et al.  Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation , 1998, Trends in Neurosciences.

[36]  D. Debanne,et al.  Long‐term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures , 1998, The Journal of physiology.

[37]  György Buzsáki,et al.  Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo , 1998, The European journal of neuroscience.

[38]  H. Sebastian Seung,et al.  Learning Continuous Attractors in Recurrent Networks , 1997, NIPS.

[39]  R. Douglas Fields,et al.  Action Potential-Dependent Regulation of Gene Expression: Temporal Specificity in Ca2+, cAMP-Responsive Element Binding Proteins, and Mitogen-Activated Protein Kinase Signaling , 1997, The Journal of Neuroscience.

[40]  J. Seamans,et al.  Contributions of Voltage-Gated Ca2+ Channels in the Proximal versus Distal Dendrites to Synaptic Integration in Prefrontal Cortical Neurons , 1997, The Journal of Neuroscience.

[41]  B. McNaughton,et al.  Paradoxical Effects of External Modulation of Inhibitory Interneurons , 1997, The Journal of Neuroscience.

[42]  V. Han,et al.  Synaptic plasticity in a cerebellum-like structure depends on temporal order , 1997, Nature.

[43]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[44]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[45]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[46]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[47]  L. F. Abbott,et al.  A Model of Spatial Map Formation in the Hippocampus of the Rat , 1999, Neural Computation.

[48]  E. Kandel,et al.  Control of Memory Formation Through Regulated Expression of a CaMKII Transgene , 1996, Science.

[49]  G. Buzsáki,et al.  Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[50]  K. I. Blum,et al.  Functional significance of long-term potentiation for sequence learning and prediction. , 1996, Cerebral cortex.

[51]  K. Deisseroth,et al.  Signaling from Synapse to Nucleus: Postsynaptic CREB Phosphorylation during Multiple Forms of Hippocampal Synaptic Plasticity , 1996, Neuron.

[52]  T. Sejnowski,et al.  A model of spike initiation in neocortical pyramidal neurons , 1995, Neuron.

[53]  T. Sejnowski Neural Networks: Sleep and memory , 1995, Current Biology.

[54]  Jian Wang,et al.  CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP , 1995, Cell.

[55]  H. Markram,et al.  Dendritic calcium transients evoked by single back‐propagating action potentials in rat neocortical pyramidal neurons. , 1995, The Journal of physiology.

[56]  G. Buzsáki,et al.  Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells , 1995, Hippocampus.

[57]  T. Sejnowski,et al.  The predictive brain: temporal coincidence and temporal order in synaptic learning mechanisms. , 1994, Learning & memory.

[58]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[59]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[60]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[61]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[62]  L. Squire Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. , 1992, Psychological review.

[63]  H. Eichenbaum,et al.  Learning‐related patterns of CA1 spike trains parallel stimulation parameters optimal for inducing hippocampal long‐term potentiation , 1991, Hippocampus.

[64]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[65]  G. Buzsáki,et al.  Cellular bases of hippocampal EEG in the behaving rat , 1983, Brain Research Reviews.

[66]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  M. Eckardt The Hippocampus as a Cognitive Map , 1980 .

[68]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[69]  T. Sejnowski Statistical constraints on synaptic plasticity. , 1977, Journal of theoretical biology.

[70]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[71]  B. Ekstrand,et al.  Sleep and Memory , 1973, Science.

[72]  Michael Harpham December , 1855, The Hospital.

[73]  T. Sejnowski,et al.  Sleep and Memory , 2022 .