Predictive learning of temporal sequences in recurrent neocortical circuits.

When a spike is initiated near the soma of a cortical pyramidal neuron, it may back-propagate up dendrites toward distal synapses, where strong depolarization can trigger spike-timing dependent Hebbian plasticity at recently activated synapses. We show that (a) these mechanisms can implement a temporal-difference algorithm for sequence learning, and (b) a population of recurrently connected neurons with this form of synaptic plasticity can learn to predict spatiotemporal input patterns. Using biophysical simulations, we demonstrate that a network of cortical neurons can develop direction selectivity similar to that observed in complex cells in alert monkey visual cortex as a consequence of learning to predict moving stimuli.

[1]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[2]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[3]  A. L. Humphrey,et al.  Hebbian learning and the development of direction selectivity: the role of geniculate response timings , 1997 .

[4]  P R Montague,et al.  Computational Properties of Peri-Dendritic Calcium Fluctuations , 1998, The Journal of Neuroscience.

[5]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[6]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[7]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Michael I. Jordan Attractor dynamics and parallelism in a connectionist sequential machine , 1990 .

[9]  Frances S. Chance,et al.  Complex cells as cortically amplified simple cells , 1999, Nature Neuroscience.

[10]  Rajesh P. N. Rao,et al.  Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex , 1997, Neural Computation.

[11]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[12]  A. Destexhe Kinetic Models of Synaptic Transmission , 1997 .

[13]  H. Barlow Cerebral predictions. , 1998, Perception.

[14]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[16]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[17]  C. Koch,et al.  Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[19]  T. Sejnowski,et al.  The predictive brain: temporal coincidence and temporal order in synaptic learning mechanisms. , 1994, Learning & memory.

[20]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[21]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[22]  K. I. Blum,et al.  Functional significance of long-term potentiation for sequence learning and prediction. , 1996, Cerebral cortex.

[23]  J. Leo van Hemmen,et al.  Development of spatiotemporal receptive fields of simple cells: II. Simulation and analysis , 1997, Biological Cybernetics.

[24]  Paul Mineiro,et al.  Analysis of Direction Selectivity Arising from Recurrent Cortical Interactions , 1998, Neural Computation.

[25]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[26]  Prof. Dr. Valentino Braitenberg,et al.  Anatomy of the Cortex , 1991, Studies of Brain Function.

[27]  A. L. Humphrey,et al.  Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure. , 1998, Journal of neurophysiology.

[28]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[29]  Edward R. Scheinerman,et al.  Invitation to Dynamical Systems , 1995 .

[30]  H. Neural Systems : Analysis and Modeling , 2000 .

[31]  T. Sejnowski,et al.  The Monetary Transmission Mechanism in the United Kingdom: Pass-Through and Policy Rules. manuscript , 1996 .

[32]  J G Daugman,et al.  Demodulation, predictive coding, and spatial vision. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  Wulfram Gerstner,et al.  A neuronal learning rule for sub-millisecond temporal coding , 1996, Nature.

[34]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[35]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  M. Livingstone,et al.  Mechanisms of Direction Selectivity in Macaque V1 , 1998, Neuron.

[37]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[38]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.

[39]  J. Leo van Hemmen,et al.  Development of spatiotemporal receptive fields of simple cells: I. Model formulation , 1997, Biological Cybernetics.

[40]  William R. Softky,et al.  Unsupervised Pixel-prediction , 1995, NIPS.

[41]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[42]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[43]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[44]  J. Movshon,et al.  Visual neural development. , 1981, Annual review of psychology.

[45]  Rajesh P. N. Rao,et al.  An optimal estimation approach to visual perception and learning , 1999, Vision Research.

[46]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[47]  David Mumford,et al.  Neuronal Architectures for Pattern-theoretic Problems , 1995 .

[48]  B. McNaughton,et al.  Experience-dependent, asymmetric expansion of hippocampal place fields. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Henry Markram,et al.  An Algorithm for Synaptic Modification Based on Exact Timing of Pre- and Post-Synaptic Action Potentials , 1997, ICANN.

[50]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[51]  S. Nelson,et al.  Orientation selectivity of cortical neurons during intracellular blockade of inhibition. , 1994, Science.

[52]  Terrence J. Sejnowski,et al.  Open questions about computation in cerebral cortex , 1986 .

[53]  Anahí Gallardo Velázquez,et al.  Conference , 1969, Journal of Neuroscience Methods.

[54]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .