Extremely Randomized Trees and Random Subwindows for Image Classification, Annotation, and Retrieval

We present a unified framework involving the extraction of random subwindows within images and the induction of ensembles of extremely randomized trees. We discuss the specialization of this framework for solving several general problems in computer vision, ranging from image classification and segmentation to content-based image retrieval and interest point detection. The methods are illustrated on various applications and datasets from the biomedical domain.

[1]  Robert F. Murphy,et al.  A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells , 2001, Bioinform..

[2]  Robert F Murphy,et al.  An active role for machine learning in drug development. , 2011, Nature chemical biology.

[3]  Raphaël Marée,et al.  Incremental indexing and distributed image search using shared randomized vocabularies , 2010, MIR '10.

[4]  Raphaël Marée,et al.  Fast Multi-class Image Annotation with Random Subwindows and Multiple Output Randomized Trees , 2009, VISAPP.

[5]  M V Boland,et al.  Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. , 1998, Cytometry.

[6]  Raphaël Marée,et al.  Towards generic image classification: an extensive empirical study , 2014 .

[7]  Gaudenz Danuser,et al.  Computer Vision in Cell Biology , 2011, Cell.

[8]  Hermann Ney,et al.  Invariant Classification of Red Blood Cells: A Comparison of Different Approaches , 2001, Bildverarbeitung für die Medizin.

[9]  Raphaël Marée,et al.  Content-based Image Retrieval by Indexing Random Subwindows with Randomized Trees , 2009, IPSJ Trans. Comput. Vis. Appl..

[10]  Raphaël Marée,et al.  Segment and combine: a generic approach for supervised learning of invariant classifiers from topologically structured data , 2006 .

[11]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[12]  Raphaël Marée,et al.  A machine learning approach for material detection in hyperspectral images , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[13]  Raphaël Marée,et al.  An empirical comparison of machine learning algorithms for generic image classification , 2003 .

[14]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[15]  Ben Glocker,et al.  Neighbourhood Approximation Forests , 2012, MICCAI.

[16]  Jing Li,et al.  A comprehensive review of current local features for computer vision , 2008, Neurocomputing.

[17]  Hermann Ney,et al.  The CLEF 2005 Automatic Medical Image Annotation Task , 2006, International Journal of Computer Vision.

[18]  Pierre Geurts,et al.  Contributions to decision tree induction: bias/variance tradeoff and time series classification , 2002 .

[19]  Lior Shamir,et al.  Pattern Recognition Software and Techniques for Biological Image Analysis , 2010, PLoS Comput. Biol..

[20]  Lior Shamir,et al.  WND-CHARM: Multi-purpose image classification using compound image transforms , 2008, Pattern Recognit. Lett..

[21]  Daniel Rueckert,et al.  Random Forest-Based Manifold Learning for Classification of Imaging Data in Dementia , 2011, MLMI.

[22]  Raphaël Marée,et al.  A generic approach for image classification based on decision tree ensembles and local sub-windows , 2004 .

[23]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[24]  Pierre Geurts,et al.  Kernelizing the output of tree-based methods , 2006, ICML '06.

[25]  Nassir Navab,et al.  ImageCLEF 2010 Working Notes on the Modality Classification Subtask , 2010, CLEF.

[26]  Rich Caruana,et al.  An empirical evaluation of supervised learning in high dimensions , 2008, ICML '08.

[27]  Ian D. Reid,et al.  Real-Time SLAM Relocalisation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[28]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[29]  P. Geurts,et al.  Random subwindows and extremely randomized trees for image classification in cell biology , 2007, BMC Cell Biology.

[30]  Vincenzo Piuri,et al.  All-IDB: The acute lymphoblastic leukemia image database for image processing , 2011, 2011 18th IEEE International Conference on Image Processing.

[31]  Frédéric Jurie,et al.  Randomized Clustering Forests for Image Classification , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Raphaël Marée,et al.  Automatic Localization of Interest Points in Zebrafish Images with Tree-Based Methods , 2011, PRIB.

[33]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[34]  Vincent Lepetit,et al.  Fast Keypoint Recognition in Ten Lines of Code , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Raphaël Marée,et al.  Random subwindows for robust image classification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[36]  Vincent Lepetit,et al.  Keypoint recognition using randomized trees , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Abderrahim Elmoataz,et al.  A color object recognition scheme: application to cellular sorting , 2003, Machine Vision and Applications.

[38]  Luc De Raedt,et al.  Top-Down Induction of Clustering Trees , 1998, ICML.

[39]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[40]  Raphaël Marée,et al.  A rich internet application for remote visualization and collaborative annotation of digital slides in histology and cytology , 2013, Diagnostic Pathology.

[41]  Ron Kimmel,et al.  Breast Cancer Diagnosis From Biopsy Images Using Generic Features and SVMs , 2006 .