Towards generic image classification: an extensive empirical study

This paper considers the general problem of image classification without using any prior knowledge about image classes. We study variants of a method based on supervised learning whose common steps are the extraction of random subwindows described by raw pixel intensity values and the use of ensemble of extremely randomized trees to directly classify images or to learn image features. The influence of method parameters and variants is thoroughly evaluated so as to provide baselines and guidelines for future studies. Detailed results are provided on 80 publicly available datasets that depict very diverse types of images (more than 3800 image classes and over 1.5 million images).

[1]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[2]  Cordelia Schmid,et al.  Semi-Local Affine Parts for Object Recognition , 2004, BMVC.

[3]  Robert F. Murphy,et al.  A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells , 2001, Bioinform..

[4]  Robert Rallo,et al.  Automated Phenotype Recognition for Zebrafish Embryo Based In Vivo High Throughput Toxicity Screening of Engineered Nano-Materials , 2012, PloS one.

[5]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[6]  Robin Strand,et al.  Automated classification of immunostaining patterns in breast tissue from the human protein atlas , 2013, Journal of pathology informatics.

[7]  Geoffrey E. Hinton,et al.  Factored 3-Way Restricted Boltzmann Machines For Modeling Natural Images , 2010, AISTATS.

[8]  Shawn D. Newsam,et al.  Spatial pyramid co-occurrence for image classification , 2011, 2011 International Conference on Computer Vision.

[9]  Jiebo Luo,et al.  Selective hidden random fields: Exploiting domain-specific saliency for event classification , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Gertjan J. Burghouts,et al.  Material-specific adaptation of color invariant features , 2009, Pattern Recognit. Lett..

[11]  Fei-Fei Li,et al.  What, where and who? Classifying events by scene and object recognition , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[12]  Ron Kimmel,et al.  Breast Cancer Diagnosis From Biopsy Images Using Generic Features and SVMs , 2006 .

[13]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[15]  M. Roth View-Based 3 D Object Recognition Using SNoW , 1999 .

[16]  Enrique Alegre,et al.  Class distribution estimation based on the Hellinger distance , 2013, Inf. Sci..

[17]  Tomoshi Otsuki,et al.  Active learning framework with iterative clustering for bioimage classification , 2012, Nature Communications.

[18]  Andrew Zisserman,et al.  Automated Flower Classification over a Large Number of Classes , 2008, 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing.

[19]  Bernt Schiele,et al.  Analyzing appearance and contour based methods for object categorization , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[20]  Geoffrey E. Hinton,et al.  3D Object Recognition with Deep Belief Nets , 2009, NIPS.

[21]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[22]  Nicolas Pinto,et al.  Why is Real-World Visual Object Recognition Hard? , 2008, PLoS Comput. Biol..

[23]  Andrew Zisserman,et al.  A Visual Vocabulary for Flower Classification , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[24]  Thomas G. Dietterich,et al.  Dictionary-free categorization of very similar objects via stacked evidence trees , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  A. Enis Cetin,et al.  Image Classification of Human Carcinoma Cells Using Complex Wavelet-Based Covariance Descriptors , 2013, PloS one.

[26]  Haibin Ling,et al.  Shape Classification Using the Inner-Distance , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Nassir Navab,et al.  ImageCLEF 2010 Working Notes on the Modality Classification Subtask , 2010, CLEF.

[28]  Anne E Carpenter,et al.  High-throughput screen for novel antimicrobials using a whole animal infection model. , 2009, ACS chemical biology.

[29]  Raphaël Marée,et al.  Biomedical Imaging Modality Classification Using Bags of Visual and Textual Terms with Extremely Randomized Trees: Report of ImageCLEF 2010 Experiments , 2010, CLEF.

[30]  Luca Maria Gambardella,et al.  Flexible, High Performance Convolutional Neural Networks for Image Classification , 2011, IJCAI.

[31]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[32]  Andrew Zisserman,et al.  Image Classification using Random Forests and Ferns , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[33]  Manik Varma,et al.  Character Recognition in Natural Images , 2009, VISAPP.

[34]  Abderrahim Elmoataz,et al.  A color object recognition scheme: application to cellular sorting , 2003, Machine Vision and Applications.

[35]  Mario Fritz,et al.  On the Significance of Real-World Conditions for Material Classification , 2004, ECCV.

[36]  Cordelia Schmid,et al.  Coloring Local Feature Extraction , 2006, ECCV.

[37]  Johannes Stallkamp,et al.  Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition , 2012, Neural Networks.

[38]  M V Boland,et al.  Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. , 1998, Cytometry.

[39]  Trevor Darrell,et al.  Adaptive Vocabulary Forests br Dynamic Indexing and Category Learning , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[40]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[41]  Eugene Kim,et al.  Overview of the ImageCLEFmed 2006 Medical Retrieval and Annotation Tasks , 2006, CLEF.

[42]  Shawn D. Newsam,et al.  Bag-of-visual-words and spatial extensions for land-use classification , 2010, GIS '10.

[43]  Barbara Caputo,et al.  Class-Specific Material Categorisation , 2005, ICCV.

[44]  Cordelia Schmid,et al.  A maximum entropy framework for part-based texture and object recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[45]  Fei-Fei Li,et al.  Grouplet: A structured image representation for recognizing human and object interactions , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[46]  Luc Van Gool,et al.  Fast indexing for image retrieval based on local appearance with re-ranking , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[47]  Yoshua Bengio,et al.  An empirical evaluation of deep architectures on problems with many factors of variation , 2007, ICML '07.

[48]  Mei Chen,et al.  Food recognition using statistics of pairwise local features , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[49]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[50]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[51]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[52]  Wei Zhang,et al.  Hierarchical building recognition , 2007, Image Vis. Comput..

[53]  Vincenzo Piuri,et al.  All-IDB: The acute lymphoblastic leukemia image database for image processing , 2011, 2011 18th IEEE International Conference on Image Processing.

[54]  Kristian Zarb Adami,et al.  Machine Learning for Galaxy Morphology Classification , 2010, ArXiv.

[55]  Bernt Schiele,et al.  How Good are Local Features for Classes of Geometric Objects , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[56]  Raphaël Marée,et al.  A rich internet application for remote visualization and collaborative annotation of digital slides in histology and cytology , 2013, Diagnostic Pathology.

[57]  Sebastian Nowozin,et al.  On feature combination for multiclass object classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[58]  Hermann Ney,et al.  Features for image retrieval: an experimental comparison , 2008, Information Retrieval.

[59]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Stepán Obdrzálek,et al.  Object Recognition using Local Affine Frames on Distinguished Regions , 2002, BMVC.

[61]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[62]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[63]  Arnold W. M. Smeulders,et al.  The Amsterdam Library of Object Images , 2004, International Journal of Computer Vision.

[64]  Yann LeCun,et al.  Large-scale Learning with SVM and Convolutional for Generic Object Categorization , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[65]  Hermann Ney,et al.  Invariant Classification of Red Blood Cells: A Comparison of Different Approaches , 2001, Bildverarbeitung für die Medizin.

[66]  Andreas Wendel,et al.  Scene Categorization from Tiny Images , 2007 .

[67]  Lior Shamir,et al.  WND-CHARM: Multi-purpose image classification using compound image transforms , 2008, Pattern Recognit. Lett..

[68]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[69]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.