Synthesis of Thinned Planar Concentric Circular Antenna Arrays --- a Differential Evolutionary Approach

Circular antenna array design is one of the most important electromagnetic optimization problems of current interest. The problem of designing a large multiple concentric planar thinned circular ring arrays of uniformly excited isotropic antennas is considered in this paper. This antenna must generate a pencil beam pattern in the vertical plane along with minimized side lobe level (SLL). In this paper, we present an optimization method based on an improved variant of one of the most powerful real parameter optimizers of current interest, called Difierential Evolution (DE). Two sets of difierent cases have been studied here. First set deals with thinned array design with the goal to achieve number of switched ofi elements equal to 220 or more. The other set contains design of array while maintaining side lobe level (SLL) below a flxed value. Both set contains two types of design, one with uniform inter-element spacing flxed at 0.5‚ and the other with optimum uniform inter-element spacing. The half-power beam width of the synthesized pattern is attempted to maintain flxed at the value equal to that of a fully populated array with uniform spacing of 0.5‚. Simulation results of the designed thinned arrays are compared with a fully populated array for all the cases to illustrate the efiectiveness of our proposed method.

[1]  G. K. Mahanti,et al.  Comparative Performance of Gravitational Search Algorithm and Modified Particle Swarm Optimization Algorithm for Synthesis of Thinned Scanned Concentric Ring Array Antenna , 2010 .

[2]  Randy L. Haupt,et al.  Thinned arrays using genetic algorithms , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[3]  G. K. Mahanti,et al.  Design of Phase-Differentiated Reconfigurable Array Antennas With Minimum Dynamic Range Ratio , 2006, IEEE Antennas and Wireless Propagation Letters.

[4]  R. Haupt,et al.  Interleaved thinned linear arrays , 2005, IEEE Transactions on Antennas and Propagation.

[5]  G. K. Mahanti,et al.  SYNTHESIS OF THINNED LINEAR ANTENNA ARRAYS WITH FIXED SIDELOBE LEVEL USING REAL-CODED GENETIC ALGORITHM , 2007 .

[6]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[7]  R. Storn,et al.  Differential evolution a simple and efficient adaptive scheme for global optimization over continu , 1997 .

[8]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[9]  W. T. Li,et al.  AN IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM FOR PATTERN SYNTHESIS OF PHASED ARRAYS , 2008 .

[10]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[11]  Hong Li,et al.  Linear array thinning based on orthogonal genetic algorithm , 2010, 2010 International Conference on Microwave and Millimeter Wave Technology.

[12]  R. Elliott Antenna Theory and Design , 2003 .

[13]  G. K. Mahanti,et al.  SYNTHESIS OF THINNED PLANAR CIRCULAR ARRAY ANTENNAS USING MODIFIED PARTICLE SWARM OPTIMIZATION , 2009 .

[14]  Korany R. Mahmoud,et al.  Analysis of uniform circular arrays for adaptive beamforming applications using particle swarm optimization algorithm: Research Articles , 2008 .

[15]  James Kennedy,et al.  Particle swarm optimization , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[16]  S. Barro,et al.  Fast array thinning using global optimization methods , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[17]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[18]  L. Schwartzman,et al.  Element behavior in a thinned array , 1967 .

[19]  A. Razavi,et al.  THINNED ARRAYS USING PATTERN SEARCH ALGORITHMS , 2008 .

[20]  E. Rajo-Iglesias,et al.  Ant Colony Optimization in Thinned Array Synthesis With Minimum Sidelobe Level , 2006, IEEE Antennas and Wireless Propagation Letters.

[21]  Moawad I. Dessouky,et al.  OPTIMUM NORMALIZED-GAUSSIAN TAPERING WINDOW FOR SIDE LOBE REDUCTION IN UNIFORM CONCENTRIC CIRCULAR ARRAYS , 2007 .

[22]  D.H. Werner,et al.  Particle swarm optimization versus genetic algorithms for phased array synthesis , 2004, IEEE Transactions on Antennas and Propagation.

[23]  Amit Konar,et al.  Differential Evolution Using a Neighborhood-Based Mutation Operator , 2009, IEEE Transactions on Evolutionary Computation.

[24]  Korany R. Mahmoud,et al.  Analysis of uniform circular arrays for adaptive beamforming applications using particle swarm optimization algorithm , 2008 .

[25]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[26]  Paolo Rocca,et al.  Dynamic thinning strategy for adaptive nulling in planar antenna arrays , 2010, 2010 IEEE International Symposium on Phased Array Systems and Technology.

[27]  M. Dessouky,et al.  EFFICIENT SIDELOBE REDUCTION TECHNIQUE FOR SMALL-SIZED CONCENTRIC CIRCULAR ARRAYS , 2006 .

[28]  Yong-Chang Jiao,et al.  Synthesis of Circular Antenna Array Using Crossed Particle Swarm Optimization Algorithm , 2006 .

[29]  Gautam Kumar Mahanti,et al.  Combination of Inverse Fast Fourier Transform and Modified Particle Swarm Optimization for Synthesis of Thinned Mutually Coupled Linear Array of Parallel Half-Wave Length Dipole Antennas , 2011 .

[30]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[31]  Moawad I. Dessouky,et al.  A Novel Tapered Beamforming Window for Uniform Concentric Circular Arrays , 2006 .

[32]  Y. Rahmat-Samii,et al.  Advances in Particle Swarm Optimization for Antenna Designs: Real-Number, Binary, Single-Objective and Multiobjective Implementations , 2007, IEEE Transactions on Antennas and Propagation.