Differential evolution a simple and efficient adaptive scheme for global optimization over continu

A new heuristic approach for minimizing possibly nonlinear and non differentiable continuous space functions is presented. By means of an extensive testbed, which includes the De Jong functions, it will be demonstrated that the new method converges faster and with more certainty than Adaptive Simulated Annealing as well as the Annealed Nelder&Mead approach, both of which have a reputation for being very powerful. The new method requires few control variables, is robust, easy to use and lends itself very well to parallel computation. ________________________________________ 1)International Computer Science Institute, 1947 Center Street, Berkeley, CA 94704-1198, Suite 600, Fax: 510-643-7684. E-mail: storn@icsi.berkeley.edu. On leave from Siemens AG, ZFE T SN 2, OttoHahn-Ring 6, D-81739 Muenchen, Germany. Fax: 01149-636-44577, Email:rainer.storn@zfe.siemens.de. 2)836 Owl Circle, Vacaville, CA 95687, kprice@solano.community.net.

[1]  L. Goddard Operations Research , 1969, Nature.

[2]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[3]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[4]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  A. Griewank Generalized descent for global optimization , 1981 .

[6]  A.L. Sangiovanni-Vincentelli,et al.  A survey of optimization techniques for integrated-circuit design , 1981, Proceedings of the IEEE.

[7]  R. Davison,et al.  Optimisation methods in Pascal , 1984 .

[8]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  David K. Smith Optimisation Methods in Pascal , 1988 .

[11]  Daniela Möbus Algorithmen zur Optimierung von Schaltungen und zur Lösung nichtlinearer Differentialgleichungen , 1989 .

[12]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[13]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[14]  E. Lüder,et al.  Optimization of circuits with a large number of parameters , 1990 .

[15]  Bruce E. Rosen,et al.  Genetic Algorithms and Very Fast Simulated Reannealing: A comparison , 1992 .

[16]  Lester Ingber Simulated annealing: Practice versus theory , 1993 .

[17]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[18]  Rainer Storn Differential evolution design of an IIR-filter , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.