Cone selectivity derived from the responses of the retinal cone mosaic to natural scenes.

To achieve color vision, the brain has to process signals of the cones in the retinal photoreceptor mosaic in a cone-type-specific way. We investigated the possibility that cone-type-specific wiring is an adaptation to the statistics of the cone signals. We analyzed estimates of cone responses to natural scenes and found that there is sufficient information in the higher order statistics of L- and M-cone responses to distinguish between cones of different types, enabling unsupervised learning of cone-type specificity. This was not the case for a fourth cone type with spectral sensitivity between L and M cones, suggesting an explanation for the lack of strong tetrachromacy in heterozygous carriers of color deficiencies.

[1]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[2]  S P McKee,et al.  Specificity of cone mechanisms in lateral interaction , 1970, The Journal of physiology.

[3]  G. F. Cooper,et al.  Development of the Brain depends on the Visual Environment , 1970, Nature.

[4]  A L Nagy,et al.  Four cone pigments in women heterozygous for color deficiency. , 1981, Journal of the Optical Society of America.

[5]  W. Paulus,et al.  A new concept of retinal colour coding , 1983, Vision Research.

[6]  G. Buchsbaum,et al.  Trichromacy, opponent colours coding and optimum colour information transmission in the retina , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  E. Brenner,et al.  Early colour deprivation in a monkey (Macaca fascicularis) , 1985, Vision Research.

[8]  D. Baylor,et al.  Spectral sensitivity of cones of the monkey Macaca fascicularis. , 1987, The Journal of physiology.

[9]  J. Mollon "Tho' she kneel'd in that place where they grew..." The uses and origins of primate colour vision. , 1989, The Journal of experimental biology.

[10]  R. Marrocco,et al.  Predictions about chromatic receptive fields assuming random cone connections. , 1989, Journal of theoretical biology.

[11]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  H. Kolb,et al.  Identification of pedicles of putative blue‐sensitive cones in the human retina , 1990, The Journal of comparative neurology.

[13]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[14]  M. Rose Evolution and physiology. , 1991, Science.

[15]  Colour coding , 1991, Nature.

[16]  Michael S. Landy,et al.  The Design of Chromatically Opponent Receptive Fields , 1991 .

[17]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[18]  David R. Williams,et al.  The design of chromatically opponent receptive fields , 1991 .

[19]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[20]  J. D. Mollon,et al.  The relationship between cone pigments and behavioural sensitivity in a new world monkey (Callithrix jacchus jacchus) , 1992, Vision Research.

[21]  D. Marshak,et al.  Bipolar cells specific for blue cones in the macaque retina , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  K. D. De Valois,et al.  A multi-stage color model. , 1993, Vision research.

[23]  D. Macleod,et al.  Spectral sensitivities of the human cones. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  R. L. Valois,et al.  A multi-stage color model , 1993, Vision Research.

[25]  J. D. Mollon,et al.  A study of women heterozygous for colour deficiencies , 1993, Vision Research.

[26]  David J. Calkins,et al.  M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses , 1994, Nature.

[27]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[28]  T. Lamb,et al.  Photoreceptor spectral sensitivities: Common shape in the long-wavelength region , 1995, Vision Research.

[29]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[30]  Ralph Linsker,et al.  A Local Learning Rule That Enables Information Maximization for Arbitrary Input Distributions , 1997, Neural Computation.

[31]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[32]  D. Teller,et al.  First glances: the vision of infants. the Friedenwald lecture. , 1997, Investigative ophthalmology & visual science.

[33]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[34]  Paul R. Martin,et al.  Evidence that Blue‐on Cells are Part of the Third Geniculocortical Pathway in Primates , 1997, The European journal of neuroscience.

[35]  Te-Won Lee,et al.  Independent Component Analysis , 1998, Springer US.

[36]  T Troscianko,et al.  Color and luminance information in natural scenes. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  S. Hendry,et al.  Neuronal chemistry and functional organization in the primate visual system , 1998, Trends in Neurosciences.

[38]  D. Ruderman,et al.  Statistics of cone responses to natural images: implications for visual coding , 1998 .

[39]  David J. Calkins,et al.  Microcircuitry and Mosaic of a Blue–Yellow Ganglion Cell in the Primate Retina , 1998, The Journal of Neuroscience.

[40]  B. B. Lee,et al.  Receptive fields of primate retinal ganglion cells studied with a novel technique , 1998, Visual Neuroscience.

[41]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources , 1999, Neural Comput..

[42]  B. Boycott,et al.  Parallel processing in the mammalian retina: the Proctor Lecture. , 1999, Investigative ophthalmology & visual science.

[43]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[44]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[45]  David J. Calkins,et al.  Evidence that Circuits for Spatial and Color Vision Segregate at the First Retinal Synapse , 1999, Neuron.

[46]  Mark A. Girolami,et al.  Self-Organising Neural Networks: Independent Component Analysis and Blind Source Separation , 1999 .

[47]  J. Nathans,et al.  Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Nathans The Evolution and Physiology of Human Color Vision Insights from Molecular Genetic Studies of Visual Pigments , 1999, Neuron.

[49]  J. Mollon Color vision: opsins and options. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[50]  A. Stockman,et al.  The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype , 2000, Vision Research.

[51]  H. Komatsu,et al.  Neural selectivity for hue and saturation of colour in the primary visual cortex of the monkey , 2000, The European journal of neuroscience.

[52]  D. Dacey Parallel pathways for spectral coding in primate retina. , 2000, Annual review of neuroscience.

[53]  T. W. Lee,et al.  Chromatic structure of natural scenes. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[54]  D. Macleod,et al.  Optimal nonlinear codes for the perception of natural colours , 2001, Network.

[55]  K. Jameson,et al.  Richer color experience in observers with multiple photopigment opsin genes , 2001, Psychonomic bulletin & review.

[56]  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001 .

[57]  R. Shapley,et al.  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001, Nature Neuroscience.

[58]  Paul R. Martin,et al.  Chromatic sensitivity of ganglion cells in the peripheral primate retina , 2001, Nature.

[59]  T. Sejnowski,et al.  Color opponency is an efficient representation of spectral properties in natural scenes , 2002, Vision Research.

[60]  Bevil R. Conway,et al.  Color contrast in macaque V1. , 2002, Cerebral cortex.

[61]  Jeremy Nathans,et al.  Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[62]  R. Shapley,et al.  Space and Time Maps of Cone Photoreceptor Signals in Macaque Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[63]  T. Sejnowski,et al.  Representation of Color Stimuli in Awake Macaque Primary Visual Cortex , 2003, Neuron.

[64]  Terrence J. Sejnowski,et al.  Spatiochromatic Receptive Field Properties Derived from Information-Theoretic Analyses of Cone Mosaic Responses to Natural Scenes , 2003, Neural Computation.

[65]  D. Dacey,et al.  Colour coding in the primate retina: diverse cell types and cone-specific circuitry , 2003, Current Opinion in Neurobiology.

[66]  土肥 英三郎 A study of computational neural network models on spatio-chromatic properties of the early visual system , 2003 .

[67]  Gerald H. Jacobs,et al.  Genetically engineered mice with an additional class of cone photoreceptors: Implications for the evolution of color vision , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[68]  David J Tolhurst,et al.  Independent components of color natural scenes resemble V1 neurons in their spatial and color tuning. , 2004, Journal of neurophysiology.

[69]  David H Brainard,et al.  Do common mechanisms of adaptation mediate color discrimination and appearance? Uniform backgrounds. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[70]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[71]  D. Foster,et al.  Frequency of metamerism in natural scenes. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[72]  Paul R. Martin,et al.  Specificity of M and L Cone Inputs to Receptive Fields in the Parvocellular Pathway: Random Wiring with Functional Bias , 2006, The Journal of Neuroscience.

[73]  M. Lewicki,et al.  THE GENERALIZED GAUSSIAN MIXTURE MODEL USING ICA , 2007 .