Color opponency is an efficient representation of spectral properties in natural scenes

[1]  E. Oja,et al.  Independent Component Analysis , 2001 .

[2]  Bevil R. Conway,et al.  Spatial Structure of Cone Inputs to Color Cells in Alert Macaque Primary Visual Cortex (V-1) , 2001, The Journal of Neuroscience.

[3]  R. Shapley,et al.  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001, Nature Neuroscience.

[4]  T. W. Lee,et al.  Chromatic structure of natural scenes. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  L. Finkel,et al.  Color-opponent receptive fields derived from independent component analysis of natural images , 2000, Vision Research.

[6]  H. Komatsu,et al.  Neural selectivity for hue and saturation of colour in the primary visual cortex of the monkey , 2000, The European journal of neuroscience.

[7]  R. L. Valois,et al.  Some transformations of color information from lateral geniculate nucleus to striate cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[9]  P O Hoyer,et al.  Independent component analysis applied to feature extraction from colour and stereo images , 2000, Network.

[10]  Bruno A. Olshausen,et al.  PROBABILISTIC FRAMEWORK FOR THE ADAPTATION AND COMPARISON OF IMAGE CODES , 1999 .

[11]  Jean-Franois Cardoso High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.

[12]  Te-Won Lee,et al.  Independent Component Analysis , 1998, Springer US.

[13]  D. Ruderman,et al.  Statistics of cone responses to natural images: implications for visual coding , 1998 .

[14]  T Troscianko,et al.  Color and luminance information in natural scenes. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[17]  M. Webster,et al.  Adaptation and the color statistics of natural images , 1997, Vision Research.

[18]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis , 1997, Neural Computation.

[19]  J. Cardoso Infomax and maximum likelihood for blind source separation , 1997, IEEE Signal Processing Letters.

[20]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[21]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[22]  M. Vorobyev,et al.  Colour vision as an adaptation to frugivory in primates , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  Barak A. Pearlmutter,et al.  A Context-Sensitive Generalization of ICA , 1996 .

[24]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[25]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[26]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[27]  D. Macleod,et al.  Spectral sensitivities of the human cones. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  B A Wandell,et al.  Linear models of surface and illuminant spectra. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[29]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[30]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  J. Mollon "Tho' she kneel'd in that place where they grew..." The uses and origins of primate colour vision. , 1989, The Journal of experimental biology.

[32]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  L. Maloney Evaluation of linear models of surface spectral reflectance with small numbers of parameters. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[34]  T Benzschawel,et al.  Remarks on signal-processing explanations of the trichromacy of vision. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[35]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[36]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  G. Buchsbaum,et al.  Trichromacy, opponent colours coding and optimum colour information transmission in the retina , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[38]  R. M. Boynton,et al.  Chromaticity diagram showing cone excitation by stimuli of equal luminance. , 1979, Journal of the Optical Society of America.

[39]  C. R. Michael Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields. , 1978, Journal of neurophysiology.

[40]  W. Stiles,et al.  Counting metameric object-color stimuli using frequency-limited spectral reflectance functions , 1977 .

[41]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[42]  N. Daw,et al.  Goldfish Retina: Organization for Simultaneous Color Contrast , 1967, Science.

[43]  Vision Research , 1961, Nature.