Trichromacy, opponent colours coding and optimum colour information transmission in the retina

This paper presents a systematic analysis of the role of opponent type processing in colour vision and the relation between opponent type colour transformations and the initial three colour mechanisms. It is shown that efficient information transmission is achieved by a transformation of the initial three colour mechanisms into an achromatic and two opponent chromatic channels. The derivation of the transformation is dependent solely on criteria from information theory. Thus it provides a logical rationale reconciling opponent type processing as an optimal necessary step after the initial three colour mechanisms, unifying respectively the Hering and Young-Helmholtz approaches to colour vision. The effects of chromatic adaptation on the spectral response of the achromatic and two chromatic channels are discussed from the point of view of information theory. It is argued that adaptation serves as a dynamic readjustment of these responses, necessary to meet criteria of efficient colour information transmission. The results are confronted with empirical observations to test the principles of the theory and the relation to other theories is discussed. Within the same framework the issue of trichromacy is discussed. It is argued that a broad class of typical colour spectra can effectively be represented by three significant degrees of freedom that make up a trichromatic system.

[1]  Thomas Young,et al.  II. The Bakerian Lecture. On the theory of light and colours , 1802, Philosophical Transactions of the Royal Society of London.

[2]  W. Nagel Handbuch der Physiologie des Menschen. , 1905 .

[3]  E. Schrödinger Grundlinien einer Theorie der Farbenmetrik im Tagessehen , 1920 .

[4]  W. Stiles A modified Helmholtz line-element in brightness-colour space , 1946 .

[5]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[6]  D. Jameson,et al.  Some Quantitative Aspects of an Opponent-Colors Theory. I. Chromatic Responses and Spectral Saturation , 1955 .

[7]  D. Jameson,et al.  Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation, and hue in normal and dichromatic vision. , 1955, Journal of the Optical Society of America.

[8]  G. Svaetichin,et al.  Spectral response curves from single cones. , 1956, Acta physiologica Scandinavica. Supplementum.

[9]  H. Barlow Retinal noise and absolute threshold. , 1956, Journal of the Optical Society of America.

[10]  D JAMESON,et al.  Some quantitative aspects of an opponent-colors theory. III. Changes in brightness, saturation, and hue with chromatic adaptation. , 1956, Journal of the Optical Society of America.

[11]  Richard Fatehchand,et al.  Glial Control of Neuronal Networks and Receptors , 1961 .

[12]  T. Tomita,et al.  Electrical activity in the vertebrate retina. , 1963, Journal of the Optical Society of America.

[13]  D. B. Judd,et al.  Spectral Distribution of Typical Daylight as a Function of Correlated Color Temperature , 1964 .

[14]  J. Cohen Dependency of the spectral reflectance curves of the Munsell color chips , 1964 .

[15]  G. Wald THE RECEPTORS OF HUMAN COLOR VISION. , 1964, Science.

[16]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[17]  R. L. Valois,et al.  Analysis of response patterns of LGN cells. , 1966, Journal of the Optical Society of America.

[18]  Sid Deutsch,et al.  Models of the nervous system , 1967 .

[19]  G Wald,et al.  Blue-blindness in the normal fovea. , 1967, Journal of the Optical Society of America.

[20]  Thomas Young,et al.  On the theory of light and colours , 1967 .

[21]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[22]  Leo M. Hurvich,et al.  Opponent-Response Functions Related to Measured Cone Photopigments* , 1968 .

[23]  R. Gallager Information Theory and Reliable Communication , 1968 .

[24]  H. Barlow,et al.  Three factors limiting the reliable detection of light by retinal ganglion cells of the cat , 1969, The Journal of physiology.

[25]  W. M. Siebert,et al.  Frequency discrimination in the auditory system: Place or periodicity mechanisms? , 1970 .

[26]  J. J. Vos,et al.  On the derivation of the foveal receptor primaries. , 1971, Vision research.

[27]  W. Pratt Spatial Transform Coding of Color Images , 1971 .

[28]  J. J. Vos,et al.  An analytical description of the line element in the zone-fluctuation model of colour vision. II. The derivation of the line element. , 1972, Vision Research.

[29]  J. J. Vos,et al.  An analytical description of the line element in the zone-fluctuation model of colour vision. I. Basic concepts. , 1972, Vision research.

[30]  J. L. Goldstein An optimum processor theory for the central formation of the pitch of complex tones. , 1973, The Journal of the Acoustical Society of America.

[31]  P L Walraven,et al.  A closer look at the tritanopic convergence point. , 1974, Vision research.

[32]  P. Whittle Letter: Intensity discrimination between flashes which do not differ in brightness: some new measurements on the "blue" cones. , 1974, Vision research.

[33]  L. Marks Blue-sensitive cones can mediate brightness , 1974 .

[34]  D. Krantz Color measurement and color theory: II. Opponent-colors theory , 1975 .

[35]  D. Krantz Color Measurement and Color Theory: I. Representation Theorem for Grassmann Structures , 1975 .

[36]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[37]  P. Gouras,et al.  Functional properties of ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[38]  E. Pugh The nature of the pi1 colour mechanism of W.S. Stiles. , 1976, The Journal of physiology.

[39]  J. Walraven Discounting the background—the missing link in the explanation of chromatic induction , 1976, Vision Research.

[40]  E. J. Augenstein,et al.  The dynamics of the Π1 colour mechanism: further evidence for two sites of adaptation , 1977, The Journal of physiology.

[41]  J. Mollon,et al.  An anomaly in the response of the eye to light of short wavelengths. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  C. R. Ingling The spectral sensitivity of the opponent-color channels , 1977, Vision Research.

[43]  C. R. Ingling,et al.  Orthogonal combination of the three visual channels , 1977, Vision Research.

[44]  C. B. Rubinstein,et al.  Digital Coding of Color Video Signals - A Review , 1977, IEEE Transactions on Communications.

[45]  W. Stiles,et al.  Counting metameric object-color stimuli using frequency-limited spectral reflectance functions , 1977 .

[46]  J. J. Vos Colorimetric and photometric properties of a 2° fundamental observer , 1978 .

[47]  J. F. Bird,et al.  A general zone theory of color and brightness vision. I. Basic formulation. , 1978, Journal of the Optical Society of America.

[48]  G. Mitarai,et al.  Receptive field arrangement of color-opponent bipolar and amacrine cells in the carp retina. , 1978, Sensory processes.

[49]  R. Weale Mechanisms of Colour Vision , 1979 .

[50]  J S Werner,et al.  Opponent chromatic mechanisms: relation to photopigments and hue naming. , 1979, Journal of the Optical Society of America.

[51]  G Buchsbaum,et al.  Optimum probabilistic processing in colour perception. II. Colour vision as template matching , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[52]  Levine Js,et al.  Visual pigments in teleost fishes : effects of habitat, microhabitat, and behavior on visual system evolution , 1979 .

[53]  Abraham Berman CHAPTER 6 – M-MATRICES , 1979 .

[54]  E. MacNichol,et al.  Visual pigments in teleost fishes: effects of habitat, microhabitat, and behavior on visual system evolution. , 1979, Sensory processes.

[55]  G Buchsbaum,et al.  Optimum probabilistic processing in colour perception. I. Colour discrimination , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[56]  J. J. Vos Line elements and physiological models of color vision , 1979 .

[57]  J. Mollon,et al.  A theory of theΠ1 andΠ3 color mechanisms of stiles , 1979, Vision Research.

[58]  R. M. Boynton Human color vision , 1979 .

[59]  R. Massof,et al.  Vector model for normal and dichromatic color vision. , 1980, Journal of the Optical Society of America.

[60]  Randy L. Haupt,et al.  Introduction to Adaptive Arrays , 1980 .

[61]  D. Macleod,et al.  Blue-sensitive cones do not contribute to luminance. , 1980, Journal of the Optical Society of America.

[62]  H. Barlow The absolute efficiency of perceptual decisions. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[63]  Y. Hashimoto,et al.  Characteristics of second order neurons in the dace retina: Physiological and morphological studies , 1981, Vision Research.

[64]  G. Buchsbaum,et al.  The retina as a two-dimensional detector array in the context of color vision theories and signal detection theory , 1981, Proceedings of the IEEE.

[65]  H. Barlow Critical limiting factors in the design of the eye and visual cortex , 1981 .

[66]  H B Barlow,et al.  The Ferrier lecture, 1980 , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[67]  J. Walraven,et al.  Perceived colour under conditions of chromatic adaptation: Evidence for gain control by π mechanisms , 1981, Vision Research.

[68]  D. Macleod,et al.  Flicker photometric study of chromatic adaption: selective suppression of cone inputs by colored backgrounds. , 1981, Journal of the Optical Society of America.

[69]  Leo Maurice Hurvich,et al.  Color vision , 1981 .

[70]  D. W. Heeley,et al.  Cardinal directions of color space , 1982, Vision Research.

[71]  Kenkichi Fukurotani Color information coding of horizontal‐cell responses in fish retina , 1982 .

[72]  H. Barlow What causes trichromacy? A theoretical analysis using comb-filtered spectra , 1982, Vision Research.

[73]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[74]  Paul R. Prucnal,et al.  Multiplication noise in the human visual system at threshold: 1. Quantum fluctuations and minimum detectable energy , 1982 .

[75]  J. Werner,et al.  Effect of chromatic adaptation on the achromatic locus: The role of contrast, luminance and background color , 1982, Vision Research.

[76]  G. Rota Non-negative matrices in the mathematical sciences: A. Berman and R. J. Plemmons, Academic Press, 1979, 316 pp. , 1983 .