Vector-evaluated particle swarm optimization with local search

Many real-world optimization problems contain multiple goals to be optimized concurrently. Vector-evaluated particle swarm optimization is a particle swarm optimization variant which employs multiple swarms to solve multi-objective optimization problems. Each swarm optimizes a single objective and information regarding current best positions is passed among swarms using a knowledge transfer strategy. This paper investigates the application of a local search technique to the vector-evaluated particle swarm optimization algorithm. A hill climbing algorithm is applied to non-dominated solutions, dominated solutions, swarm personal best positions and swarm global best positions. Performance of each local search strategy is compared with the standard vector-evaluated particle swarm optimization algorithm using various knowledge transfer strategies. The results indicate that three out of the four local search techniques significantly improved performance of the vector-evaluated particle swarm optimization algorithm for problems possessing two objectives. No significant performance improvement was found for three-objective problems.

[1]  M. N. Vrahatis,et al.  Particle swarm optimization method in multiobjective problems , 2002, SAC '02.

[2]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[3]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[4]  Andries Petrus Engelbrecht,et al.  Knowledge Transfer Strategies for Vector Evaluated Particle Swarm Optimization , 2013, EMO.

[5]  Mark Fleischer,et al.  The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .

[6]  Konstantinos E. Parsopoulos,et al.  MULTIOBJECTIVE OPTIMIZATION USING PARALLEL VECTOR EVALUATED PARTICLE SWARM OPTIMIZATION , 2003 .

[7]  Andries Petrus Engelbrecht,et al.  Analysis of stagnation behavior of vector evaluated particle swarm optimization , 2013, 2013 IEEE Symposium on Swarm Intelligence (SIS).

[8]  Masao Arakawa,et al.  Sequential approximate multi-objective optimization using radial basis function network , 2013 .

[9]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .

[10]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[11]  Wanzhong Zhao,et al.  Performance optimization of electric power steering based on multi-objective genetic algorithm , 2013 .

[12]  Yaochu Jin,et al.  Dynamic Weighted Aggregation for evolutionary multi-objective optimization: why does it work and how? , 2001 .

[13]  Andries Petrus Engelbrecht,et al.  Dynamic Multi-Objective Optimization Using PSO , 2013, Metaheuristics for Dynamic Optimization.

[14]  Marde Helbig,et al.  Solving dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation , 2012 .

[15]  James Kennedy,et al.  Particle swarm optimization , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[16]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[17]  Winston Khoon Guan Seah,et al.  A performance study on synchronous and asynchronous updates in particle swarm optimization , 2011, GECCO '11.

[18]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[19]  Tobias Friedrich,et al.  Approximating the Volume of Unions and Intersections of High-Dimensional Geometric Objects , 2008, ISAAC.

[20]  Claude Baron,et al.  Ant colony algorithm hybridized with tabu and greedy searches as applied to multi-objective optimization in project management , 2007 .

[21]  Andries Petrus Engelbrecht,et al.  A scalability study of multi-objective particle swarm optimizers , 2013, 2013 IEEE Congress on Evolutionary Computation.

[22]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[23]  R. Lyndon While,et al.  A Scalable Multi-objective Test Problem Toolkit , 2005, EMO.

[24]  Andries Petrus Engelbrecht,et al.  Multi-objective DE and PSO strategies for production scheduling , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[25]  Kay Chen Tan,et al.  An Investigation on Noisy Environments in Evolutionary Multiobjective Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[26]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[27]  N. Lakhdar,et al.  An improved analog electrical performance of submicron Dual-Material gate (DM) GaAs-MESFETs using multi-objective computation , 2013 .

[28]  Andries Petrus Engelbrecht,et al.  Particle swarm optimization: Velocity initialization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[29]  Yangsheng Xu,et al.  Multi-Objective Genetic Algorithm for Hybrid Electric Vehicle Parameter Optimization , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[31]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.