Virtual Retina: A biological retina model and simulator, with contrast gain control

We propose a new retina simulation software, called Virtual Retina, which transforms a video into spike trains. Our goal is twofold: Allow large scale simulations (up to 100,000 neurons) in reasonable processing times and keep a strong biological plausibility, taking into account implementation constraints. The underlying model includes a linear model of filtering in the Outer Plexiform Layer, a shunting feedback at the level of bipolar cells accounting for rapid contrast gain control, and a spike generation process modeling ganglion cells. We prove the pertinence of our software by reproducing several experimental measurements from single ganglion cells such as cat X and Y cells. This software will be an evolutionary tool for neuroscientists that need realistic large-scale input spike trains in subsequent treatments, and for educational purposes.

[1]  M. Carandini,et al.  The Suppressive Field of Neurons in Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.

[2]  Sovira Tan,et al.  Performance of three recursive algorithms for fast space-variant Gaussian filtering , 2003, Real-time imaging.

[3]  J. V. van Hateren,et al.  The photocurrent response of human cones is fast and monophasic , 2006, BMC Neuroscience.

[4]  F. Rieke Temporal Contrast Adaptation in Salamander Bipolar Cells , 2001, The Journal of Neuroscience.

[5]  Leo M. Chalupa,et al.  Chapter 1 Glutamate-mediated responses in developing retinal ganglion cells , 2001 .

[6]  N. Lesica,et al.  Encoding of Natural Scene Movies by Tonic and Burst Spikes in the Lateral Geniculate Nucleus , 2004, The Journal of Neuroscience.

[7]  E Kaplan,et al.  The dynamics of primate retinal ganglion cells. , 2001, Progress in brain research.

[8]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[9]  E. Chichilnisky,et al.  Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina , 2002, The Journal of Neuroscience.

[10]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[11]  J D Victor,et al.  The intrinsic dynamics of retinal bipolar cells isolated from tiger salamander , 1998, Visual Neuroscience.

[12]  Tamás Roska,et al.  A CNN framework for modeling parallel processing in a mammalian retina , 2002, Int. J. Circuit Theory Appl..

[13]  J. Victor The dynamics of the cat retinal X cell centre. , 1987, The Journal of physiology.

[14]  E. Raviola,et al.  Gap junctions between photoreceptor cells in the vertebrate retina. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Robert G. Smith,et al.  Spike Generator Limits Efficiency of Information Transfer in a Retinal Ganglion Cell , 2004, The Journal of Neuroscience.

[16]  B. O'Brien,et al.  Intrinsic physiological properties of cat retinal ganglion cells , 2002, The Journal of physiology.

[17]  B. Knight,et al.  Contrast gain control in the primate retina: P cells are not X-like, some M cells are , 1992, Visual Neuroscience.

[18]  D. Dacey,et al.  The Classical Receptive Field Surround of Primate Parasol Ganglion Cells Is Mediated Primarily by a Non-GABAergic Pathway , 2004, The Journal of Neuroscience.

[19]  G Falk,et al.  A rise in intracellular Ca2+ underlies light adaptation in dogfish retinal ‘on’ bipolar cells , 1999, The Journal of physiology.

[20]  C. Enroth-Cugell,et al.  Spatio‐temporal interactions in cat retinal ganglion cells showing linear spatial summation. , 1983, The Journal of physiology.

[21]  Eduardo Fernández,et al.  Webvision: The Organization of the Retina and Visual System , 1995 .

[22]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[23]  D. Norren,et al.  Light adaptation of primate cones: An analysis based on extracellular data , 1983, Vision Research.

[24]  M. Carandini,et al.  Visual cortex: Fatigue and adaptation , 2000, Current Biology.

[25]  Jeanny Hérault,et al.  Modeling Visual Perception for Image Processing , 2007, IWANN.

[26]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[27]  K. Palczewski,et al.  Turned on by Ca2+! The physiology and pathology of Ca2+-binding proteins in the retina , 1996, Trends in Neurosciences.

[28]  F. Werblin,et al.  Spatiotemporal patterns at the retinal output. , 1998, Journal of neurophysiology.

[29]  J. B. Demb,et al.  Presynaptic Mechanism for Slow Contrast Adaptation in Mammalian Retinal Ganglion Cells , 2006, Neuron.

[30]  F. Werblin,et al.  Vertical interactions across ten parallel, stacked representations in the mammalian retina , 2001, Nature.

[31]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[32]  D. Marshak,et al.  Gap junctions with amacrine cells provide a feedback pathway for ganglion cells within the retina , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  D. Dacey,et al.  Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[34]  B. Borghuis,et al.  Cellular Basis for Contrast Gain Control over the Receptive Field Center of Mammalian Retinal Ganglion Cells , 2007, The Journal of Neuroscience.

[35]  Barry B. Lee,et al.  Processing of Natural Temporal Stimuli by Macaque Retinal Ganglion Cells , 2002, The Journal of Neuroscience.

[36]  P. Lennie,et al.  Fine Structure of Parvocellular Receptive Fields in the Primate Fovea Revealed by Laser Interferometry , 2000, The Journal of Neuroscience.

[37]  Alberto Prieto,et al.  Computational and ambient intelligence , 2009, Neurocomputing.

[38]  K. Naka,et al.  White-Noise Analysis of a Neuron Chain: An Application of the Wiener Theory , 1972, Science.

[39]  G. DeAngelis,et al.  Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. , 1997, Journal of neurophysiology.

[40]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[41]  D. Baylor,et al.  Visual transduction in cones of the monkey Macaca fascicularis. , 1990, The Journal of physiology.

[42]  R. Reid,et al.  Low Response Variability in Simultaneously Recorded Retinal, Thalamic, and Cortical Neurons , 2000, Neuron.

[43]  Barry B. Lee,et al.  Center surround receptive field structure of cone bipolar cells in primate retina , 2000, Vision Research.

[44]  Y. Frégnac,et al.  A phenomenological model of visually evoked spike trains in cat geniculate nonlagged X-cells , 1998, Visual Neuroscience.

[45]  E. Kaplan,et al.  The dynamics of primate M retinal ganglion cells , 1999, Visual Neuroscience.

[46]  P Heggelund,et al.  Response variability of single cells in the dorsal lateral geniculate nucleus of the cat. Comparison with retinal input and effect of brain stem stimulation. , 1994, Journal of neurophysiology.

[47]  T. Lamb,et al.  Spatial properties of horizontal cell responses in the turtle retina. , 1976, The Journal of physiology.

[48]  Adrien Wohrer Model and large-scale simulator of a biological retina, with contrast gain control. (Modèle et simulateur à grande échelle d'une rétine biologique, avec contrôle de gain) , 2008 .

[49]  H. Wässle,et al.  Synaptic Currents Generating the Inhibitory Surround of Ganglion Cells in the Mammalian Retina , 2001, The Journal of Neuroscience.

[50]  J. B. Demb,et al.  Bipolar Cells Contribute to Nonlinear Spatial Summation in the Brisk-Transient (Y) Ganglion Cell in Mammalian Retina , 2001, The Journal of Neuroscience.

[51]  Kerry J. Kim,et al.  Temporal Contrast Adaptation in the Input and Output Signals of Salamander Retinal Ganglion Cells , 2001, The Journal of Neuroscience.

[52]  Connaughton,et al.  Differential expression of voltage‐gated K+ and Ca2+ currents in bipolar cells in the zebrafish retinal slice , 1998, The European journal of neuroscience.

[53]  C. Mead,et al.  Neuromorphic Robot Vision with Mixed Analog- Digital Architecture , 2005 .

[54]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.

[55]  R. Shapley,et al.  Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. , 1976, The Journal of physiology.

[56]  Ethan A. Benardete,et al.  Chapter 2 The dynamics of primate retinal ganglion cells , 2001 .

[57]  K. Naka,et al.  The generation and spread of S‐potentials in fish (Cyprinidae) , 1967, The Journal of physiology.

[58]  H B BARLOW,et al.  Action potentials from the frog's retina , 1953, The Journal of physiology.

[59]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[60]  S. Nawy Regulation of the On Bipolar Cell mGluR6 Pathway by Ca2+ , 2000, The Journal of Neuroscience.

[61]  Jacques Gautrais,et al.  SpikeNET: A simulator for modeling large networks of integrate and fire neurons , 1999, Neurocomputing.

[62]  W. Singer,et al.  Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus , 1996, Nature.

[63]  Xiao-Jing Wang,et al.  Spike-Frequency Adaptation of a Generalized Leaky Integrate-and-Fire Model Neuron , 2004, Journal of Computational Neuroscience.

[64]  R. Shapley,et al.  The effect of contrast on the transfer properties of cat retinal ganglion cells. , 1978, The Journal of physiology.

[65]  R. Reid,et al.  Predicting Every Spike A Model for the Responses of Visual Neurons , 2001, Neuron.

[66]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[67]  Adrien Wohrer,et al.  The vertebrate retina: a functional review , 2008 .

[68]  R H Masland,et al.  Light-evoked responses of bipolar cells in a mammalian retina. , 2000, Journal of neurophysiology.

[69]  P. Lennie,et al.  Profound Contrast Adaptation Early in the Visual Pathway , 2004, Neuron.

[70]  Tim Gollisch,et al.  Rapid Neural Coding in the Retina with Relative Spike Latencies , 2008, Science.

[71]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[72]  Jeanny Hérault A model of colour processing in the retina of vertebrates: From photoreceptors to colour opposition and colour constancy phenomena , 1996, Neurocomputing.

[73]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[74]  James Theiler,et al.  Correlated Firing Improves Stimulus Discrimination in a Retinal Model , 2004, Neural Computation.

[75]  E. Kaplan,et al.  Dynamics of primate P retinal ganglion cells: responses to chromatic and achromatic stimuli , 1999, The Journal of physiology.

[76]  Kerry J. Kim,et al.  Slow Na+ Inactivation and Variance Adaptation in Salamander Retinal Ganglion Cells , 2003, The Journal of Neuroscience.

[77]  Matthias H Hennig,et al.  The Influence of Different Retinal Subcircuits on the Nonlinearity of Ganglion Cell Behavior , 2002, The Journal of Neuroscience.

[78]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[79]  C. Enroth-Cugell,et al.  The receptive‐field spatial structure of cat retinal Y cells. , 1987, The Journal of physiology.

[80]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[81]  Adrien Wohrer Mathematical study of a neural gain control mechanism , 2007 .

[82]  G. Falk,et al.  A rise in intracellular Ca 2+ underlies light adaptation in dogfish retinal , 1999 .

[83]  M. Meister,et al.  The Light Response of Retinal Ganglion Cells Is Truncated by a Displaced Amacrine Circuit , 1997, Neuron.