A Comparison of Different Circuit Representations for Evolutionary Analog Circuit Design

Evolvable hardware represents an emerging field in which evolutionary design has recently produced promising results. However, the choice of effective circuit representation is inexplicit. In this paper, we compare different circuit representations for evolutionary analog circuit design. The results indicate that the design quality is better for the element-list circuit representation.

[1]  Kenji Toda,et al.  Real-world applications of analog and digital evolvable hardware , 1999, IEEE Trans. Evol. Comput..

[2]  Hitoshi Iba,et al.  Analog circuit design with a variable length chromosome , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[3]  Pauline C. Haddow,et al.  Evolving robust digital designs , 2002, Proceedings 2002 NASA/DoD Conference on Evolvable Hardware.

[4]  Marley M. B. R. Vellasco,et al.  Analog Circuits Evolution in Extrinsic and Intrinsic Modes , 1998, ICES.

[5]  Heinz Mühlenbein,et al.  Application of the univariate marginal distribution algorithm to analog circuit design , 2002, Proceedings 2002 NASA/DoD Conference on Evolvable Hardware.

[6]  Paul J. Layzell,et al.  Explorations in design space: unconventional electronics design through artificial evolution , 1999, IEEE Trans. Evol. Comput..

[7]  J. B. Grimbleby,et al.  Hybrid genetic algorithms for analogue network synthesis , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[8]  Heinz Mühlenbein,et al.  Optimal Mutation Rate Using Bayesian Priors for Estimation of Distribution Algorithms , 2001, SAGA.

[9]  Andrew M. Tyrrell,et al.  The architecture for a hardware immune system , 2001, Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH-2001.

[10]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[11]  John R. Koza,et al.  Genetic Programming III: Darwinian Invention & Problem Solving , 1999 .

[12]  Rob A. Rutenbar,et al.  Remembrance of circuits past: macromodeling by data mining in large analog design spaces , 2002, DAC '02.

[13]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[14]  H. Muhlenbein,et al.  Effective mutation rate for probabilistic models in evolutionary analog circuit design , 2002, Proceedings 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002).

[15]  Jason D. Lohn,et al.  A circuit representation technique for automated circuit design , 1999, IEEE Trans. Evol. Comput..

[16]  N. Biggs Algebraic Graph Theory , 1974 .

[17]  Alister Hamilton,et al.  Ant Circuit World: An Ant Algorithm MATLABTM Toolbox for the Design, Visualisation and Analysis of Analogue Circuits , 2001, ICES.

[18]  Yun Li,et al.  GA automated design and synthesis of analog circuits with practical constraints , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[19]  Jason D. Lohn,et al.  A comparison of dynamic fitness schedules for evolutionary design of amplifiers , 1999, Proceedings of the First NASA/DoD Workshop on Evolvable Hardware.

[20]  Heinz Mühlenbein,et al.  The Equation for Response to Selection and Its Use for Prediction , 1997, Evolutionary Computation.

[21]  Xin Yao,et al.  Getting most out of evolutionary approaches , 2002, Proceedings 2002 NASA/DoD Conference on Evolvable Hardware.