Instance Generators and Test Suites for the Multiobjective Quadratic Assignment Problem

We describe, and make publicly available, two problem instance generators for a multiobjective version of the well-known quadratic assignment problem (QAP). The generators allow a number of instance parameters to be set, including those controlling epistasis and inter-objective correlations. Based on these generators, several initial test suites are provided and described. For each test instance we measure some global properties and, for the smallest ones, make some initial observations of the Pareto optimal sets/fronts. Our purpose in providing these tools is to facilitate the ongoing study of problem structure in multiobjective (combinatorial) optimization, and its effects on search landscape and algorithm performance.

[1]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[2]  É. Taillard COMPARISON OF ITERATIVE SEARCHES FOR THE QUADRATIC ASSIGNMENT PROBLEM. , 1995 .

[3]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[4]  Juan Julián Merelo Guervós,et al.  Parallel Problem Solving from Nature — PPSN VII , 2002, Lecture Notes in Computer Science.

[5]  Bart Naudts,et al.  A comparison of predictive measures of problem difficulty in evolutionary algorithms , 2000, IEEE Trans. Evol. Comput..

[6]  David W. Corne,et al.  Towards Landscape Analyses to Inform the Design of Hybrid Local Search for the Multiobjective Quadratic Assignment Problem , 2002, HIS.

[7]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[8]  Elwood S. Buffa,et al.  The Facilities Layout Problem in Perspective , 1966 .

[9]  Marco Laumanns,et al.  Bayesian Optimization Algorithms for Multi-objective Optimization , 2002, PPSN.

[10]  William H. Press,et al.  Numerical recipes in C++: the art of scientific computing, 2nd Edition (C++ ed., print. is corrected to software version 2.10) , 1994 .

[11]  Charles Fleurent,et al.  Genetic Hybrids for the Quadratic Assignment Problem , 1993, Quadratic Assignment and Related Problems.

[12]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[13]  Thomas Jansen,et al.  A New Framework for the Valuation of Algorithms for Black-Box Optimization , 2002, FOGA.

[14]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[15]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[16]  Kalyanmoy Deb,et al.  Constrained Test Problems for Multi-objective Evolutionary Optimization , 2001, EMO.

[17]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[18]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[19]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[20]  Joshua D. Knowles,et al.  A comparison of encodings and algorithms for multiobjective minimum spanning tree problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[21]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[22]  Vincent Bachelet Métaheuristiques parallèles hybrides : application au problème d'affection quadratique , 1999 .