Numerical recipes in C++: the art of scientific computing, 2nd Edition (C++ ed., print. is corrected to software version 2.10)

IS B N 0-523108-5) C opright (C ) 19-1992 by C am bidge U nirsity P rss. P rogram s C opright (C ) 19-1992 by N um eical R eipes S ftw are. P rm ission is grnted or inrnet uers to m ke ne pper cpy or teir ow n peonal use. F uther repruction, or ny coying of m acineredable fles (inluding his one) to ny srver om pter, is sictly proibited. T o oder N um eical R eipes boks, disettes, or C D R O M s visit w esite hp://w w w .n.com or call 1-8072-7423 (N orth A m erica oly), or snd em il to trde@ cu.cam .ac.uk (otside N orth A m eca). Numerical Recipes in C

[1]  DAVID G. KENDALL,et al.  Introduction to Mathematical Statistics , 1947, Nature.

[2]  W. Magnus,et al.  Formulas and theorems for the functions of mathematical physics , 1949 .

[3]  Cleve Moler,et al.  Mathematical Handbook for Scientists and Engineers , 1961 .

[4]  Harald Bergstriim Mathematical Theory of Probability and Statistics , 1966 .

[5]  J. Crank Difference Methods for Initial-Value Problems 2nd edn , 1968 .

[6]  G. Forsythe,et al.  Computer Solution of Linear Algebraic Systems , 1969 .

[7]  A. Householder The numerical treatment of a single nonlinear equation , 1970 .

[8]  J. H. Wilkinson A HANDBOOK OF NUMERICAL MATRIX INVERSION AND SOLUTION OF LINEAR EQUATIONS , 1970 .

[9]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[10]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[11]  M. A. Wolfe A first course in numerical analysis , 1972 .

[12]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[13]  D. C. Champeney,et al.  Fourier Transforms and Their Physical Applications , 1973 .

[14]  D. E. O'Connor,et al.  Fourier transforms and their physical applications , 1974 .

[15]  E. Lehmann,et al.  Nonparametrics: Statistical Methods Based on Ranks , 1976 .

[16]  D. Jacobs The State of the Art in Numerical Analysis. , 1978 .

[17]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[18]  P. Bloomfield,et al.  Fourier Analysis of Time Series: An Introduction , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Donald G. Childers,et al.  Modern Spectrum Analysis , 1978 .

[20]  A. Izenman,et al.  Fourier Analysis of Time Series: An Introduction. , 1979 .

[21]  G. Reinsel,et al.  Introduction to Mathematical Statistics (4th ed.). , 1980 .

[22]  H. Nussbaumer Fast Fourier transform and convolution algorithms , 1981 .

[23]  M. J. Norušis,et al.  SPSS introductory guide : basic statistics and operations , 1982 .

[24]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[25]  Charles M. Rader,et al.  Fast transforms: Algorithms, analyses, applications , 1984 .

[26]  R. Sedgewick,et al.  Algorithms (2nd ed.) , 1988 .

[27]  R. Bowers,et al.  Numerical Modeling in Applied Physics and Astrophysics , 1991 .

[28]  H. Keller Numerical Methods for Two-Point Boundary-Value Problems , 1993 .

[29]  A. W. Kemp,et al.  Kendall's Advanced Theory of Statistics. , 1994 .