Human-Like Combat Behaviour via Multiobjective Neuroevolution

Although evolution has proven to be a powerful search method for discovering effective behaviour for sequential decision-making problems, it seems unlikely that evolving for raw performance could result in behaviour that is distinctly human-like. This chapter demonstrates how human-like behaviour can be evolved by restricting a bot’s actions in a way consistent with human limitations and predilections. This approach evolves good behaviour, but assures that it is consistent with how humans behave. The approach is demonstrated in the \({UT{\char 94}2}\) bot for the commercial first-person shooter videogame Unreal Tournament 2004. \({UT{\char 94}2}\) ’s human-like qualities allowed it to take second place in BotPrize 2010, a competition to develop human-like bots for Unreal Tournament 2004. This chapter analyzes \({UT{\char 94}2}\) , explains how it achieved its current level of humanness, and discusses insights gained from the competition results that should lead to improved human-like bot performance in future competitions and in videogames in general.

[1]  Stéphane Doncieux,et al.  Using behavioral exploration objectives to solve deceptive problems in neuro-evolution , 2009, GECCO.

[2]  J. W. Atmar,et al.  Comparing genetic operators with gaussian mutations in simulated evolutionary processes using linear systems , 1990, Biological Cybernetics.

[3]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[4]  Araceli Sanchis,et al.  A Machine Consciousness Approach to the Design of Human-Like Bots , 2012, Believable Bots.

[5]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[6]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[7]  Risto Miikkulainen,et al.  Automatic feature selection in neuroevolution , 2005, GECCO '05.

[8]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[9]  Risto Miikkulainen,et al.  Believable Bot Navigation via Playback of Human Traces , 2012, Believable Bots.

[10]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[11]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[12]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[13]  Philip Hingston,et al.  A new design for a Turing Test for Bots , 2010, Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games.

[14]  Julian Togelius,et al.  Evolution of a subsumption architecture neurocontroller , 2004, J. Intell. Fuzzy Syst..

[15]  Joanna J. Bryson,et al.  Intelligence by design: principles of modularity and coordination for engineering complex adaptive agents , 2001 .

[16]  Dario Floreano,et al.  Genetic Team Composition and Level of Selection in the Evolution of Cooperation , 2009, IEEE Transactions on Evolutionary Computation.

[17]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[18]  Risto Miikkulainen,et al.  Evolving agent behavior in multiobjective domains using fitness-based shaping , 2010, GECCO '10.

[19]  Philip Hingston,et al.  A Turing Test for Computer Game Bots , 2009, IEEE Transactions on Computational Intelligence and AI in Games.

[20]  Risto Miikkulainen,et al.  Evolving multi-modal behavior in NPCs , 2009, CIG.

[21]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[22]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[23]  Risto Miikkulainen,et al.  Active Guidance for a Finless Rocket Using Neuroevolution , 2003, GECCO.

[24]  Risto Miikkulainen,et al.  Real-Time Evolution of Neural Networks in the NERO Video Game , 2006, AAAI.

[25]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[26]  C. Darwin Charles Darwin The Origin of Species by means of Natural Selection or The Preservation of Favoured Races in the Struggle for Life , 2004 .

[27]  Martin V. Butz,et al.  Optimized sensory-motor couplings plus strategy extensions for the TORCS car racing challenge , 2009, 2009 IEEE Symposium on Computational Intelligence and Games.

[28]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[29]  Rudolf Kadlec,et al.  Pogamut 3 Can Assist Developers in Building AI (Not Only) for Their Videogame Agents , 2009, AGS.

[30]  Andrew N. Marshall,et al.  Gamebots: A 3D Virtual World Test-Bed For Multi-Agent Research , 2001 .

[31]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[32]  Julian Togelius,et al.  Hierarchical controller learning in a First-Person Shooter , 2009, 2009 IEEE Symposium on Computational Intelligence and Games.

[33]  Risto Miikkulainen,et al.  Evolving neural networks for strategic decision-making problems , 2009, Neural Networks.