Temporal codes and sparse representations: A key to understanding rapid processing in the visual system

Where neural information processing is concerned, there is no debate about the fact that spikes are the basic currency for transmitting information between neurons. How the brain actually uses them to encode information remains more controversial. It is commonly assumed that neuronal firing rate is the key variable, but the speed with which images can be analysed by the visual system poses a major challenge for rate-based approaches. We will thus expose here the possibility that the brain makes use of the spatio-temporal structure of spike patterns to encode information. We then consider how such rapid selective neural responses can be generated rapidly through spike-timing-dependent plasticity (STDP) and how these selectivities can be used for visual representation and recognition. Finally, we show how temporal codes and sparse representations may very well arise one from another and explain some of the remarkable features of processing in the visual system.

[1]  Moshe Abeles,et al.  Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[2]  Robert C. Liu,et al.  Variability and information in a neural code of the cat lateral geniculate nucleus. , 2001, Journal of neurophysiology.

[3]  Simon J. Thorpe,et al.  Spike arrival times: A highly efficient coding scheme for neural networks , 1990 .

[4]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  M. Nicolelis,et al.  Thalamcortical optimization of tactile processing according to behavioral state , 2002, Nature Neuroscience.

[6]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[7]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[8]  C. Koch,et al.  Is perception discrete or continuous? , 2003, Trends in Cognitive Sciences.

[9]  M. Diamond,et al.  The Role of Spike Timing in the Coding of Stimulus Location in Rat Somatosensory Cortex , 2001, Neuron.

[10]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[11]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[12]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[13]  R. Pfeifer,et al.  Connectionism in Perspective , 1989 .

[14]  S. Thorpe,et al.  Spike times make sense , 2005, Trends in Neurosciences.

[15]  Kiyohiko Nakamura Neural Processing in the Subsecond Time Range in the Temporal Cortex , 1998, Neural Computation.

[16]  B J Richmond,et al.  Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. II. Information transmission. , 1990, Journal of neurophysiology.

[17]  E. Chichilnisky,et al.  Precision of spike trains in primate retinal ganglion cells. , 2004, Journal of neurophysiology.

[18]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[19]  M. Diamond,et al.  Population Coding of Stimulus Location in Rat Somatosensory Cortex , 2001, Neuron.

[20]  Wulfram Gerstner,et al.  Mathematical formulations of Hebbian learning , 2002, Biological Cybernetics.

[21]  Christof Koch,et al.  Temporal Precision of Spike Trains in Extrastriate Cortex of the Behaving Macaque Monkey , 1999, Neural Computation.

[22]  G. Henry,et al.  Physiological studies on the feedback connection to the striate cortex from cortical areas 18 and 19 of the cat , 1988, Experimental Brain Research.

[23]  Jesper Tegnér,et al.  Spike-timing-dependent plasticity: common themes and divergent vistas , 2002, Biological Cybernetics.

[24]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[25]  Henry Kennedy,et al.  Early specification of the hierarchical organization of visual cortical areas in the macaque monkey. , 2002, Cerebral cortex.

[26]  R. VanRullen Visual saliency and spike timing in the ventral visual pathway , 2003, Journal of Physiology-Paris.

[27]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[28]  R VanRullen,et al.  Is it a Bird? Is it a Plane? Ultra-Rapid Visual Categorisation of Natural and Artifactual Objects , 2001, Perception.

[29]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. I. The single spike train. , 1967, Biophysical journal.

[30]  Daniel D. Lee,et al.  Equilibrium properties of temporally asymmetric Hebbian plasticity. , 2000, Physical review letters.

[31]  Bruno A. Olshausen,et al.  Sparse Codes and Spikes , 2001 .

[32]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. , 1967, Biophysical journal.

[33]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[34]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[35]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. , 1990, Journal of neurophysiology.

[36]  J. Victor,et al.  Nature and precision of temporal coding in visual cortex: a metric-space analysis. , 1996, Journal of neurophysiology.

[37]  E. Rolls,et al.  The latency of activation of neurones in the lateral hypothalamus and substantia innominata during feeding in the monkey , 1979, Brain Research.

[38]  A. Delorme,et al.  Early Cortical Orientation Selectivity: How Fast Inhibition Decodes the Order of Spike Latencies , 2003, Journal of Computational Neuroscience.

[39]  M. R. Mehta,et al.  Role of experience and oscillations in transforming a rate code into a temporal code , 2002, Nature.

[40]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[41]  E. D. Adrian,et al.  The Basis of Sensation , 1928, The Indian Medical Gazette.

[42]  S. Thorpe,et al.  The Time Course of Visual Processing: From Early Perception to Decision-Making , 2001, Journal of Cognitive Neuroscience.

[43]  S. Thorpe,et al.  Speed of processing in the human visual system , 1996, Nature.

[44]  S. Thorpe,et al.  Rapid categorization of natural images by rhesus monkeys , 1998, Neuroreport.

[45]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[46]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[47]  Wolf Singer,et al.  Time as coding space? , 1999, Current Opinion in Neurobiology.

[48]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[49]  S. Thorpe,et al.  Surfing a spike wave down the ventral stream , 2002, Vision Research.

[50]  M. Taylor,et al.  Visual categorization during childhood: an ERP study. , 2002, Psychophysiology.

[51]  J. J. Hopfield,et al.  Pattern recognition computation using action potential timing for stimulus representation , 1995, Nature.

[52]  Jose-Manuel Alonso,et al.  Functionally distinct inhibitory neurons at the first stage of visual cortical processing , 2003, Nature Neuroscience.

[53]  E T Rolls,et al.  Neuronal responses related to visual recognition. , 1982, Brain : a journal of neurology.

[54]  L. Abbott,et al.  Cortical Development and Remapping through Spike Timing-Dependent Plasticity , 2001, Neuron.

[55]  William B. Levy,et al.  Energy Efficient Neural Codes , 1996, Neural Computation.

[56]  B. Knight,et al.  Response variability and timing precision of neuronal spike trains in vivo. , 1997, Journal of neurophysiology.

[57]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[58]  P. Lennie The Cost of Cortical Computation , 2003, Current Biology.

[59]  D. Feldman,et al.  Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex , 2000, Neuron.

[60]  Rufin van Rullen,et al.  Neurons Tune to the Earliest Spikes Through STDP , 2005, Neural Computation.

[61]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[62]  O. Prospero-Garcia,et al.  Reliability of Spike Timing in Neocortical Neurons , 1995 .

[63]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[64]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[65]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[66]  S Ullman,et al.  Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. , 1995, Cerebral cortex.

[67]  Sir G. Archaeopteryx Object-based attention in the primary visual cortex of the macaque monkey , 1998 .

[68]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[69]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[70]  R. Johansson,et al.  First spikes in ensembles of human tactile afferents code complex spatial fingertip events , 2004, Nature Neuroscience.

[71]  Mark F Bear,et al.  Bidirectional synaptic plasticity: from theory to reality. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[72]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[73]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[74]  Rajesh P. N. Rao,et al.  Probabilistic Models of the Brain: Perception and Neural Function , 2002 .

[75]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[76]  S. Hestrin,et al.  Electrical synapses between Gaba-Releasing interneurons , 2001, Nature Reviews Neuroscience.

[77]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[78]  F. Sengpiel,et al.  The Role of Activity in Development of the Visual System , 2002, Current Biology.

[79]  J Gautrais,et al.  Rate coding versus temporal order coding: a theoretical approach. , 1998, Bio Systems.

[80]  S. Thorpe,et al.  Dynamics of orientation coding in area V1 of the awake primate , 1993, Visual Neuroscience.

[81]  G. Hartmann,et al.  Parallel Processing in Neural Systems and Computers , 1990 .

[82]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.