Learning Dynamic Tactile Sensing With Robust Vision-Based Training

Dynamic tactile sensing is a fundamental ability to recognize materials and objects. However, while humans are born with partially developed dynamic tactile sensing and quickly master this skill, today's robots remain in their infancy. The development of such a sense requires not only better sensors but the right algorithms to deal with these sensors' data as well. For example, when classifying a material based on touch, the data are noisy, high-dimensional, and contain irrelevant signals as well as essential ones. Few classification methods from machine learning can deal with such problems. In this paper, we propose an efficient approach to infer suitable lower dimensional representations of the tactile data. In order to classify materials based on only the sense of touch, these representations are autonomously discovered using visual information of the surfaces during training. However, accurately pairing vision and tactile samples in real-robot applications is a difficult problem. The proposed approach, therefore, works with weak pairings between the modalities. Experiments show that the resulting approach is very robust and yields significantly higher classification performance based on only dynamic tactile sensing.

[1]  Times , 1866, The Dental register.

[2]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[3]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[4]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[5]  L. Tucker An inter-battery method of factor analysis , 1958 .

[6]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[7]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[8]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[9]  Mark R. Cutkosky,et al.  Sensing skin acceleration for slip and texture perception , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[10]  John Kenneth Salisbury,et al.  Application of Change Detection to Dynamic Contact Sensing , 1994, Int. J. Robotics Res..

[11]  Robert D. Howe,et al.  A tactile sensor for localizing transient events in manipulation , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[12]  Ping Zhang,et al.  A full tactile sensing suite for dextrous robot hands and use in contact force control , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[13]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[14]  K. Rose Deterministic annealing for clustering, compression, classification, regression, and related optimization problems , 1998, Proc. IEEE.

[15]  Santosh S. Vempala,et al.  Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.

[16]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[17]  Andrew T. Miller,et al.  Integration of Vision , Force and Tactile Sensing for Grasping , 1999 .

[18]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[19]  Santosh S. Vempala,et al.  Latent Semantic Indexing , 2000, PODS 2000.

[20]  Beth Logan,et al.  Mel Frequency Cepstral Coefficients for Music Modeling , 2000, ISMIR.

[21]  M. Hollins,et al.  Imposed Vibration Influences Perceived Tactile Smoothness , 2000, Perception.

[22]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[23]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[24]  James Llinas,et al.  Handbook of Multisensor Data Fusion , 2001 .

[25]  H. Bülthoff,et al.  Viewpoint Dependence in Visual and Haptic Object Recognition , 2001, Psychological science.

[26]  Roman Rosipal,et al.  Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space , 2002, J. Mach. Learn. Res..

[27]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Danica Kragic,et al.  Biologically motivated visual servoing and grasping for real world tasks , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[29]  Gunther Heidemann,et al.  Dynamic tactile sensing for object identification , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[30]  John Shawe-Taylor,et al.  Canonical Correlation Analysis: An Overview with Application to Learning Methods , 2004, Neural Computation.

[31]  R. S. Johansson,et al.  Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects , 2004, Experimental Brain Research.

[32]  J. Hawkins,et al.  On Intelligence , 2004 .

[33]  E. Mjolsness,et al.  Learning for autonomous navigation : extrapolating from underfoot to the far field , 2005 .

[34]  Michael I. Jordan,et al.  A Probabilistic Interpretation of Canonical Correlation Analysis , 2005 .

[35]  Miriam Fend,et al.  Whisker-Based Texture Discrimination on a Mobile Robot , 2005, ECAL.

[36]  A. Volgenant,et al.  A shortest augmenting path algorithm for dense and sparse linear assignment problems , 1987, Computing.

[37]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[38]  James M. Rehg,et al.  Traversability classification using unsupervised on-line visual learning for outdoor robot navigation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[39]  Katherine J. Kuchenbecker,et al.  Improving contact realism through event-based haptic feedback , 2006, IEEE Transactions on Visualization and Computer Graphics.

[40]  Miles C. Bowman,et al.  Control strategies in object manipulation tasks , 2006, Current Opinion in Neurobiology.

[41]  Ibrahim Halatci Vision-based terrain classification and classifier fusion for planetary exploration rovers , 2006 .

[42]  J. Andrew Bagnell,et al.  Improving robot navigation through self‐supervised online learning , 2006, J. Field Robotics.

[43]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[44]  Julia Hirschberg,et al.  V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure , 2007, EMNLP.

[45]  Pietro Perona,et al.  Dimensionality Reduction Using Automatic Supervision for Vision-Based Terrain Learning , 2007, Robotics: Science and Systems.

[46]  S. Lacey,et al.  Vision and Touch: Multiple or Multisensory Representations of Objects? , 2007, Perception.

[47]  Qiang Yang,et al.  Transfer Learning via Dimensionality Reduction , 2008, AAAI.

[48]  Arthur Gretton,et al.  Learning Taxonomies by Dependence Maximization , 2008, NIPS.

[49]  Sethu Vijayakumar,et al.  Information about Complex Fingertip Parameters in Individual Human Tactile Afferent Neurons , 2009, The Journal of Neuroscience.

[50]  J. Randall Flanagan,et al.  Coding and use of tactile signals from the fingertips in object manipulation tasks , 2009, Nature Reviews Neuroscience.

[51]  Rainer Lienhart,et al.  Multilayer pLSA for multimodal image retrieval , 2009, CIVR '09.

[52]  Wolfram Burgard,et al.  Object identification with tactile sensors using bag-of-features , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[53]  G. Debrégeas,et al.  The Role of Fingerprints in the Coding of Tactile Information Probed with a Biomimetic Sensor , 2009, Science.

[54]  Susan J. Lederman,et al.  Multisensory Texture Perception , 2010 .

[55]  Patrick Pirim,et al.  Tactile Texture Discrimination in the Robot-rat Psikharpax , 2010, BIOSIGNALS.

[56]  Giulio Sandini,et al.  Tactile Sensing—From Humans to Humanoids , 2010, IEEE Transactions on Robotics.

[57]  Christoph H. Lampert,et al.  Weakly-Paired Maximum Covariance Analysis for Multimodal Dimensionality Reduction and Transfer Learning , 2010, ECCV.

[58]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[59]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.