Computer Science Perspectives on Prerational Intelligence

The subject of computer science is information processing or problem solving with electronic computing devices. These devices may be standard personal computers, large parallel computers or special purpose hardware circuits.

[1]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[2]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem , 1937 .

[3]  A. Church The calculi of lambda-conversion , 1941 .

[4]  J. P. Secrétan,et al.  Der Saccus endolymphaticus bei Entzündungsprozessen , 1944 .

[5]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[6]  George H. Mealy,et al.  A method for synthesizing sequential circuits , 1955 .

[7]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .

[8]  S. Muroga,et al.  Theory of majority decision elements , 1961 .

[9]  Eric Goles Ch.,et al.  The Convergence of Symmetric Threshold Automata , 1981, Inf. Control..

[10]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[11]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Michael Sipser,et al.  Borel sets and circuit complexity , 1983, STOC.

[13]  Eric Goles Ch.,et al.  Transient length in sequential iteration of threshold functions , 1983, Discret. Appl. Math..

[14]  Uzi Vishkin,et al.  Constant Depth Reducibility , 1984, SIAM J. Comput..

[15]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[16]  Hong Jia-wei Computation: Computability, similarity, and duality , 1986 .

[17]  Pavel Pudlák,et al.  Threshold circuits of bounded depth , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[18]  Michael Luby,et al.  Steepest Descent Can Take Exponential Time for Symmetric Connection Networks , 1988, Complex Syst..

[19]  Jia-Wei Hong On connectionist models , 1988 .

[20]  B. Widrow,et al.  The truck backer-upper: an example of self-learning in neural networks , 1989, International 1989 Joint Conference on Neural Networks.

[21]  Gerald Tesauro,et al.  Neurogammon Wins Computer Olympiad , 1989, Neural Computation.

[22]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[23]  Eric Allender,et al.  A note on the power of threshold circuits , 1989, 30th Annual Symposium on Foundations of Computer Science.

[24]  M. Padberg,et al.  Addendum: Optimization of a 532-city symmetric traveling salesman problem by branch and cut , 1990 .

[25]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[26]  Helge Ritter,et al.  Neuronale Netze - eine Einführung in die Neuroinformatik selbstorganisierender Netzwerke , 1990 .

[27]  Martin Grötschel,et al.  Solution of large-scale symmetric travelling salesman problems , 1991, Math. Program..

[28]  Georg Schnitger,et al.  On the computational power of sigmoid versus Boolean threshold circuits , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[29]  Hava T. Siegelmann,et al.  On the computational power of neural nets , 1992, COLT '92.

[30]  Gerald Tesauro,et al.  Practical Issues in Temporal Difference Learning , 1992, Mach. Learn..

[31]  Babak Hassibi,et al.  Second Order Derivatives for Network Pruning: Optimal Brain Surgeon , 1992, NIPS.

[32]  Eduardo D. Sontag,et al.  Feedforward Nets for Interpolation and Classification , 1992, Journal of computer and system sciences (Print).

[33]  Ian Parberry,et al.  Circuit complexity and neural networks , 1994 .

[34]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994, Neural Computation.

[35]  Heinrich Braun,et al.  ENZO-M - A Hybrid Approach for Optimizing Neural Networks by Evolution and Learning , 1994, PPSN.

[36]  Gerald Tesauro,et al.  Temporal difference learning and TD-Gammon , 1995, CACM.

[37]  Ivan Bratko,et al.  Learning to control dynamic systems , 1995 .

[38]  Richard S. Sutton,et al.  Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding , 1995, NIPS.

[39]  Helge Ritter,et al.  Modularization by Cascading Neural Networks , 2000 .

[40]  H. Braun Evolution — A Paradigm for Constructing Intelligent Agents , 2000 .

[41]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[42]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.