Phase Retrieval: An Overview of Recent Developments

The problem of phase retrieval is a classic one in optics and arises when one is interested in recovering an unknown signal from the magnitude (intensity) of its Fourier transform. While there have existed quite a few approaches to phase retrieval, recent developments in compressed sensing and convex optimization-based signal recovery have inspired a host of new ones. This work presents an overview of these approaches. Since phase retrieval, by its very nature, is ill-posed, to make the problem meaningful one needs to either assume prior structure on the signal (e.g., sparsity) or obtain additional measurements (e.g., masks, structured illuminations). For both the cases, we review conditions for the identifiability of the signal, as well as practical algorithms for signal recovery. In particular, we demonstrate that it is possible to robustly and efficiently identify an unknown signal solely from phaseless Fourier measurements, a fact with potentially far-reaching implications.

[1]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[2]  Kannan Ramchandran,et al.  PhaseCode: Fast and efficient compressive phase retrieval based on sparse-graph codes , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[3]  Dustin G. Mixon,et al.  Phase retrieval from power spectra of masked signals , 2013, ArXiv.

[4]  Kannan Ramchandran,et al.  Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity , 2013, 2013 IEEE International Symposium on Information Theory.

[5]  Yonina C. Eldar,et al.  Convex Optimization in Signal Processing and Communications , 2009 .

[6]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[7]  Felix Krahmer,et al.  Improved Recovery Guarantees for Phase Retrieval from Coded Diffraction Patterns , 2014, arXiv.org.

[8]  A. Walther The Question of Phase Retrieval in Optics , 1963 .

[9]  Mark Stefik,et al.  Inferring DNA Structures from Segmentation Data , 1978, Artif. Intell..

[10]  Yonina C. Eldar,et al.  STFT Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms , 2015, IEEE Journal of Selected Topics in Signal Processing.

[11]  Martin Vetterli,et al.  Sparse spectral factorization: Unicity and reconstruction algorithms , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[12]  Yonina C. Eldar,et al.  On conditions for uniqueness in sparse phase retrieval , 2013, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[13]  Prateek Jain,et al.  Phase Retrieval Using Alternating Minimization , 2013, IEEE Transactions on Signal Processing.

[14]  M. Hayes The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform , 1982 .

[15]  Yonina C. Eldar,et al.  Sparsity-based Ankylography for Recovering 3D molecular structures from single-shot 2D scattered light intensity , 2015, Nature Communications.

[16]  Steven G. Johnson,et al.  Subwavelength imaging in photonic crystals , 2003 .

[17]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[18]  Chandra Sekhar Seelamantula,et al.  An iterative algorithm for phase retrieval with sparsity constraints: application to frequency domain optical coherence tomography , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[19]  Yonina C. Eldar,et al.  Phase retrieval with masks using convex optimization , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[20]  Yonina C. Eldar,et al.  Blind Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[21]  Babak Hassibi,et al.  Reconstruction of integers from pairwise distances , 2012, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[22]  A. L. Patterson Ambiguities in the X-Ray Analysis of Crystal Structures , 1944 .

[23]  M.G. Bellanger,et al.  Digital processing of speech signals , 1980, Proceedings of the IEEE.

[24]  Gitta Kutyniok,et al.  1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .

[25]  Babak Hassibi,et al.  Recovery of sparse 1-D signals from the magnitudes of their Fourier transform , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[26]  Julius O. Smith,et al.  Estimating a Signal from a Magnitude Spectrogram via Convex Optimization , 2012, 1209.2076.

[27]  Steven Skiena,et al.  Reconstructing sets from interpoint distances (extended abstract) , 1990, SCG '90.

[28]  Alexandre d'Aspremont,et al.  Phase recovery, MaxCut and complex semidefinite programming , 2012, Math. Program..

[29]  Yonina C Eldar,et al.  Sparsity-based Super-resolution and Phase-retrieval in Waveguide Arrays References and Links , 2022 .

[30]  J. Fienup,et al.  Phase retrieval with transverse translation diversity: a nonlinear optimization approach. , 2008, Optics express.

[31]  A.V. Oppenheim,et al.  The importance of phase in signals , 1980, Proceedings of the IEEE.

[32]  S. Sastry,et al.  Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming , 2011, 1111.6323.

[33]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[34]  Xiaodong Li,et al.  Phase Retrieval from Coded Diffraction Patterns , 2013, 1310.3240.

[35]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[36]  EDWARD M. HOFSTETTER,et al.  Construction of time-limited functions with specified autocorrelation functions , 1964, IEEE Trans. Inf. Theory.

[37]  Yonina C. Eldar,et al.  Sparsity Based Sub-wavelength Imaging with Partially Incoherent Light via Quadratic Compressed Sensing References and Links , 2022 .

[38]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[39]  Leigh S. Martin,et al.  Potential and Challenge of Ankylography , 2011 .

[40]  Babak Hassibi,et al.  Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms , 2013, IEEE Transactions on Signal Processing.

[41]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[42]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[43]  Yonina C. Eldar,et al.  Sparse Phase Retrieval from Short-Time Fourier Measurements , 2014, IEEE Signal Processing Letters.

[44]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[45]  Yonina C. Eldar,et al.  Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms , 2012, SIAM J. Optim..

[46]  E. Loewen,et al.  Diffraction Gratings and Applications , 2018 .

[47]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[48]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[49]  D. Kane Principal components generalized projections: a review [Invited] , 2008 .

[50]  B. Javidi,et al.  Compressive Fresnel Holography , 2010, Journal of Display Technology.

[51]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[52]  R. Horstmeyer,et al.  Wide-field, high-resolution Fourier ptychographic microscopy , 2013, Nature Photonics.

[53]  E. Ash,et al.  Super-resolution Aperture Scanning Microscope , 1972, Nature.

[54]  R. Balan,et al.  Painless Reconstruction from Magnitudes of Frame Coefficients , 2009 .

[55]  Jae Lim,et al.  Signal estimation from modified short-time Fourier transform , 1984 .

[56]  A.V. Oppenheim,et al.  Enhancement and bandwidth compression of noisy speech , 1979, Proceedings of the IEEE.

[57]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[58]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[59]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[60]  J. Rodenburg Ptychography and Related Diffractive Imaging Methods , 2008 .

[61]  Richard G. Baraniuk,et al.  Compressive phase retrieval , 2007, SPIE Optical Engineering + Applications.

[62]  James R Fienup,et al.  Phase retrieval algorithms: a personal tour [Invited]. , 2013, Applied optics.

[63]  Yonina C. Eldar,et al.  Efficient coherent diffractive imaging for sparsely varying objects. , 2013, Optics express.

[64]  Martin Vetterli,et al.  Phase Retrieval for Sparse Signals: Uniqueness Conditions , 2013, ArXiv.

[65]  Jae Lim,et al.  Signal reconstruction from short-time Fourier transform magnitude , 1983 .

[66]  Dustin G. Mixon,et al.  Near-optimal phase retrieval of sparse vectors , 2013, Optics & Photonics - Optical Engineering + Applications.

[67]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[68]  K. Nugent,et al.  Phase retrieval in x-ray imaging based on using structured illumination , 2008 .

[69]  Rick P. Millane,et al.  Phase retrieval in crystallography and optics , 1990 .

[70]  Yonina C. Eldar,et al.  Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices , 2012, IEEE Transactions on Information Theory.

[71]  S. Marchesini Publisher's Note: “Invited Article: A unified evaluation of iterative projection algorithms for phase retrieval” [Rev. Sci. Instrum. 78, 011301 (2007)] , 2007 .

[72]  O. Bunk,et al.  Coherent diffractive imaging using phase front modifications. , 2008, Physical review letters.

[73]  A. Faridian,et al.  Nanoscale imaging using deep ultraviolet digital holographic microscopy. , 2010, Optics express.

[74]  Babak Hassibi,et al.  Sparse phase retrieval: Convex algorithms and limitations , 2013, 2013 IEEE International Symposium on Information Theory.

[75]  A. L. Patterson A Fourier Series Method for the Determination of the Components of Interatomic Distances in Crystals , 1934 .

[76]  Dustin G. Mixon,et al.  Saving phase: Injectivity and stability for phase retrieval , 2013, 1302.4618.

[77]  J. Rodenburg,et al.  Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging , 2012, Nature Communications.

[78]  Yonina C Eldar,et al.  Super-resolution and reconstruction of sparse sub-wavelength images. , 2009, Optics express.

[79]  Yonina C. Eldar,et al.  Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects , 2015, Nature Communications.

[80]  Dustin G. Mixon,et al.  Phase Retrieval with Polarization , 2012, SIAM J. Imaging Sci..

[81]  Arvind Gupta,et al.  On the turnpike problem , 2000 .

[82]  R. Trebino Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses , 2000 .

[83]  Buyurmaiz Baykal,et al.  Blind channel estimation via combining autocorrelation and blind phase estimation , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[84]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging , 2014, ArXiv.

[85]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[86]  Yonina C. Eldar Sampling Theory: Beyond Bandlimited Systems , 2015 .

[87]  T. Heinosaari,et al.  Quantum Tomography under Prior Information , 2011, 1109.5478.

[88]  øöö Blockinø Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization , 2002 .