Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms

The problem of signal recovery from its Fourier transform magnitude is of paramount importance in various fields of engineering and has been around for more than 100 years. Due to the absence of phase information, some form of additional information is required in order to be able to uniquely identify the signal of interest. In this paper, we focus our attention on discrete-time sparse signals (of length <inline-formula><tex-math notation="LaTeX">$n$ </tex-math></inline-formula>). We first show that if the discrete Fourier transform dimension is greater than or equal to <inline-formula><tex-math notation="LaTeX">$2n$</tex-math></inline-formula>, then almost all signals with <italic> aperiodic</italic> support can be uniquely identified by their Fourier transform magnitude (up to time shift, conjugate flip, and global phase). Then, we develop an efficient two-stage sparse-phase retrieval algorithm (TSPR), which involves: identifying the support, i.e., the locations of the nonzero components, of the signal using a combinatorial algorithm; and identifying the signal values in the support using a convex algorithm. We show that TSPR can <italic> provably</italic> recover most <inline-formula><tex-math notation="LaTeX">$O(n^{1/2-{\epsilon }})$</tex-math> </inline-formula>-sparse signals (up to a time shift, conjugate flip, and global phase). We also show that, for most <inline-formula><tex-math notation="LaTeX">$O(n^{1/4-{\epsilon }})$</tex-math></inline-formula>-sparse signals, the recovery is <italic>robust</italic> in the presence of measurement noise. These recovery guarantees are asymptotic in nature. Numerical experiments complement our theoretical analysis and verify the effectiveness of TSPR.

[1]  C. V. Eynden,et al.  A proof of a conjecture of Erdös , 1969 .

[2]  Stephen P. Boyd,et al.  Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices , 2003, Proceedings of the 2003 American Control Conference, 2003..

[3]  Dustin G. Mixon,et al.  Saving phase: Injectivity and stability for phase retrieval , 2013, 1302.4618.

[4]  Ali H. Sayed,et al.  A survey of spectral factorization methods , 2001, Numer. Linear Algebra Appl..

[5]  R. J.,et al.  Phase retrieval using boundary conditions , 2002 .

[6]  Steven Skiena,et al.  Reconstructing sets from interpoint distances (extended abstract) , 1990, SCG '90.

[7]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[8]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[9]  Weiyu Xu,et al.  Weighted ℓ1 minimization for sparse recovery with prior information , 2009, 2009 IEEE International Symposium on Information Theory.

[10]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[11]  Xiaodong Li,et al.  Phase Retrieval from masked Fourier transforms , 2013, ArXiv.

[12]  Yonina C. Eldar,et al.  On conditions for uniqueness in sparse phase retrieval , 2013, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[13]  Rick P. Millane,et al.  Phase retrieval in crystallography and optics , 1990 .

[14]  Yonina C. Eldar,et al.  Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices , 2012, IEEE Transactions on Information Theory.

[15]  Ramesh Hariharan,et al.  The restriction mapping problem revisited , 2002, J. Comput. Syst. Sci..

[16]  Yonina C. Eldar,et al.  Phase retrieval with masks using convex optimization , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[17]  S. Sastry,et al.  Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming , 2011, 1111.6323.

[18]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[19]  Xiaodong Li,et al.  Phase Retrieval from Coded Diffraction Patterns , 2013, 1310.3240.

[20]  Justin K. Romberg,et al.  Blind Deconvolution Using Convex Programming , 2012, IEEE Transactions on Information Theory.

[21]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[22]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[23]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[24]  Albert Fannjiang,et al.  Absolute uniqueness of phase retrieval with random illumination , 2011, ArXiv.

[25]  Michel Verhaegen,et al.  Quadratic Basis Pursuit , 2013, 1301.7002.

[26]  Felix Krahmer,et al.  Improved Recovery Guarantees for Phase Retrieval from Coded Diffraction Patterns , 2014, arXiv.org.

[27]  A. Walther The Question of Phase Retrieval in Optics , 1963 .

[28]  Babak Hassibi,et al.  Reconstruction of integers from pairwise distances , 2012, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[29]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2013, SIAM J. Imaging Sci..

[30]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[31]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[32]  Michael Werman,et al.  On the Complexity of Inverting the Autocorrelation Function of a Finite Integer Sequence, and the Problem of Locating n Points on a Line, Given the (n atop 2t) Unlabelled Distances Between Them , 1988 .

[33]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[34]  Babak Hassibi,et al.  Sparse phase retrieval: Convex algorithms and limitations , 2013, 2013 IEEE International Symposium on Information Theory.

[35]  A. L. Patterson A Fourier Series Method for the Determination of the Components of Interatomic Distances in Crystals , 1934 .

[36]  Arvind Gupta,et al.  On the turnpike problem , 2000 .

[37]  Lee Aaron Newberg,et al.  An algorithm for analysing probed partial digestion experiments , 1995, Comput. Appl. Biosci..

[38]  Peter G. Casazza,et al.  Phase retrieval , 2015, SPIE Optical Engineering + Applications.

[39]  M. Hayes,et al.  Reducible polynomials in more than one variable , 1982, Proceedings of the IEEE.

[40]  J. Franklin,et al.  Ambiguities in the X‐ray analysis of crystal structures , 1974 .

[41]  Chandra Sekhar Seelamantula,et al.  An iterative algorithm for phase retrieval with sparsity constraints: application to frequency domain optical coherence tomography , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[42]  Prateek Jain,et al.  Phase Retrieval Using Alternating Minimization , 2013, IEEE Transactions on Signal Processing.

[43]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[44]  Yonina C. Eldar,et al.  Sparsity Based Sub-wavelength Imaging with Partially Incoherent Light via Quadratic Compressed Sensing References and Links , 2022 .

[45]  Zheng Zhang An Exponential Example for a Partial Digest Mapping Algorithm , 1994, J. Comput. Biol..

[46]  P. Seymour,et al.  The Structure of Homometric Sets , 1982 .

[47]  Babak Hassibi,et al.  On robust phase retrieval for sparse signals , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[48]  James R. Fienup,et al.  Reconstruction of the support of an object from the support of its autocorrelation , 1982 .

[49]  Martin Vetterli,et al.  Sparse spectral factorization: Unicity and reconstruction algorithms , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[50]  Zhang Fe Phase retrieval from coded diffraction patterns , 2015 .

[51]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[52]  R. Balan,et al.  Painless Reconstruction from Magnitudes of Frame Coefficients , 2009 .

[53]  A. L. Patterson A Direct Method for the Determination of the Components of Interatomic Distances in Crystals , 1935 .

[54]  Dustin G. Mixon,et al.  Phase retrieval from power spectra of masked signals , 2013, ArXiv.

[55]  Holger Boche,et al.  Fast compressive phase retrieval from Fourier measurements , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[56]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[57]  Kannan Ramchandran,et al.  PhaseCode: Fast and efficient compressive phase retrieval based on sparse-graph codes , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[58]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[59]  EDWARD M. HOFSTETTER,et al.  Construction of time-limited functions with specified autocorrelation functions , 1964, IEEE Trans. Inf. Theory.

[60]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[61]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[62]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[63]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[64]  øöö Blockinø Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization , 2002 .

[65]  Sundeep Rangan,et al.  Compressive Phase Retrieval via Generalized Approximate Message Passing , 2014, IEEE Transactions on Signal Processing.

[66]  Philippe Rigollet,et al.  Computational Lower Bounds for Sparse PCA , 2013, ArXiv.

[67]  Mark Stefik,et al.  Inferring DNA Structures from Segmentation Data , 1978, Artif. Intell..

[68]  Babak Hassibi,et al.  Recovery of sparse 1-D signals from the magnitudes of their Fourier transform , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[69]  Martin Vetterli,et al.  Phase Retrieval for Sparse Signals: Uniqueness Conditions , 2013, ArXiv.