Sparse Bump Sonification : a New Tool for Multichannel EEG Diagnosis of Brain Disorders

The purpose of this paper is to investigate utilization of music and multimedia technology to create a computational intelligence procedure for EEG multichannel signals analysis that would be of clinical utility to medical practitioners and researchers. We propose here a novel approach based on multi channel sonification, with a time-frequency representation and sparsification process using bump modeling. Specific focus is given to applications in early detection and diagnosis of early stage of Alzheimer’s disease. The fundamental question explored in this paper is whether clinically valuable information, not available from the conventional graphical EEG representation, might become apparent through an audio representation. Preliminary evaluation of the obtained music score – by sample entropy, number of notes, and synchronous activity – show promising results.

[1]  Francesco Rundo,et al.  Fronto-parietal coupling of brain rhythms in mild cognitive impairment: A multicentric EEG study , 2006, Brain Research Bulletin.

[2]  J. Richman,et al.  Physiological time-series analysis using approximate entropy and sample entropy. , 2000, American journal of physiology. Heart and circulatory physiology.

[3]  A. Engelbrecht Computational Intelligence: An Introduction, Second Edition , 2007 .

[4]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[5]  Petri Toiviainen,et al.  MIDI toolbox : MATLAB tools for music research , 2004 .

[6]  Andrzej Cichocki,et al.  On the synchrony of steady state visual evoked potentials and oscillatory burst events , 2009, Cognitive Neurodynamics.

[7]  Eduardo Reck Miranda,et al.  Interfacing the Brain Directly with Musical Systems: On Developing Systems for Making Music with Brain Signals , 2005, Leonardo.

[8]  W. Shankle,et al.  A new EEG method for estimating cortical neuronal impairment that is sensitive to early stage Alzheimer's disease , 2002, Clinical Neurophysiology.

[9]  Rémi Gervais,et al.  A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics , 2007, Neural Networks.

[10]  S. Rombouts,et al.  Disturbed fluctuations of resting state EEG synchronization in Alzheimer's disease , 2005, Clinical Neurophysiology.

[11]  Andrzej Cichocki,et al.  EEG paroxysmal gamma waves during Bhramari Pranayama: A yoga breathing technique , 2009, Consciousness and Cognition.

[12]  F. Vialatte Modélisation en bosses pour l'analyse de motifs oscillatoires reproductibles dans l'activité de populations neuronales: applications à l'apprentissage olfactif chez l'animal et à la détection précoce de la maladie d'Alzheimer , 2005 .

[13]  Emil Jovanov,et al.  Acoustic rendering as support for sustained attention during biomedical procedures , 1998 .

[14]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[15]  Gerold Baier,et al.  The Sonification of Rhythms in Human Electroencephalogram , 2004, ICAD.

[16]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[17]  Allan Kardec Barros,et al.  Auditory Feedback for Brain Computer Interface Management - An EEG Data Sonification Approach , 2006, KES.

[18]  Nikola Kasabov,et al.  Evolving Connectionist Systems: The Knowledge Engineering Approach , 2007 .

[19]  R. Ihl,et al.  EEG and the Test for the Early Detection of Dementia with Discrimination from Depression (TE4D): a validation study , 2004, International journal of geriatric psychiatry.

[20]  John Haugeland,et al.  Artificial intelligence - the very idea , 1987 .

[21]  G. Adler,et al.  EEG coherence in Alzheimer’s dementia , 2003, Journal of Neural Transmission.

[22]  Andrzej Cichocki,et al.  Quantifying Statistical Interdependence by Message Passing on Graphs—Part I: One-Dimensional Point Processes , 2009, Neural Computation.

[23]  Andrzej Cichocki,et al.  EEG windowed statistical wavelet scoring for evaluation and discrimination of muscular artifacts , 2008, Physiological measurement.

[24]  Helge Ritter,et al.  SONIFICATIONS FOR EEG DATA ANALYSIS , 2002 .

[25]  S. Guzzetti,et al.  Physiological time-series analysis using approximate entropy and sample entropy , 2000 .