Quantifying Statistical Interdependence by Message Passing on Graphs—Part I: One-Dimensional Point Processes

Abstract We present a novel approach to quantify the statistical interdependence of two time series, referred to as stochastic event synchrony (SES). The first step is to extract “events” from the two given time series. The next step is to try to align events from one time series with events from the other. The better the alignment, the more similar the two time series are considered to be. More precisely, the similarity is quantified by the following parameters: time delay, variance of the timing jitter, fraction of noncoincident events, and average similarity of the aligned events. The pairwise alignment and SES parameters are determined by statistical inference. In particular, the SES parameters are computed by maximum a posteriori (MAP) estimation, and the pairwise alignment is obtained by applying the max-product algorithm. This letter deals with one-dimensional point processes; the extension to multidimensional point processes is considered in a companion letter in this issue. By analyzing surrogate data, we demonstrate that SES is able to quantify both timing precision and event reliability more robustly than classical measures can. As an illustration, neuronal spike data generated by the Morris-Lecar neuron model are considered.

[1]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[2]  P. Sellers On the Theory and Computation of Evolutionary Distances , 1974 .

[3]  L. R. Rabiner,et al.  A comparative study of several dynamic time-warping algorithms for connected-word recognition , 1981, The Bell System Technical Journal.

[4]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[5]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[6]  A. Grossmann,et al.  Cycle-octave and related transforms in seismic signal analysis , 1984 .

[7]  V. Zolotarev One-dimensional stable distributions , 1986 .

[8]  P. Hall ONE‐DIMENSIONAL STABLE DISTRIBUTIONS (Translations of Mathematical Monographs 65) , 1987 .

[9]  R. Howard,et al.  Local convergence analysis of a grouped variable version of coordinate descent , 1987 .

[10]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[11]  Richard Kronland-Martinet,et al.  Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies , 1992, IEEE Trans. Inf. Theory.

[12]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[13]  E. Vaadia,et al.  Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. , 1993, Journal of neurophysiology.

[14]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[15]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[16]  Robert G. Gallager,et al.  Discrete Stochastic Processes , 1995 .

[17]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[18]  W. Pulleyblank Matchings and extensions , 1996 .

[19]  Jonathan D. Victor,et al.  Metric-space analysis of spike trains: theory, algorithms and application , 1998, q-bio/0309031.

[20]  Don H. Johnson,et al.  Information-theoretic analysis of neural coding , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[21]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  Boris S. Gutkin,et al.  Dynamics of Membrane Excitability Determine Interspike Interval Variability: A Link Between Spike Generation Mechanisms and Cortical Spike Train Statistics , 1998, Neural Computation.

[23]  S. Mallat A wavelet tour of signal processing , 1998 .

[24]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[25]  William T. Freeman,et al.  On the fixed points of the max-product algorithm , 2000 .

[26]  L. Kantha,et al.  Numerical models of oceans and oceanic processes , 2000 .

[27]  H. Matsuda Cerebral blood flow and metabolic abnormalities in Alzheimer’s disease , 2001, Annals of nuclear medicine.

[28]  T. Koenig,et al.  Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-naı̈ve patients with schizophrenia: preliminary results , 2001, Schizophrenia Research.

[29]  W. Singer Consciousness and the Binding Problem , 2001, Annals of the New York Academy of Sciences.

[30]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[31]  Mark C. W. van Rossum,et al.  A Novel Spike Distance , 2001, Neural Computation.

[32]  James C. Bezdek,et al.  Some Notes on Alternating Optimization , 2002, AFSS.

[33]  J. White,et al.  Frequency selectivity of layer II stellate cells in the medial entorhinal cortex. , 2002, Journal of neurophysiology.

[34]  M. Browne,et al.  Low-probability event-detection and separation via statistical wavelet thresholding: an application to psychophysiological denoising , 2002, Clinical Neurophysiology.

[35]  R Quian Quiroga,et al.  Performance of different synchronization measures in real data: a case study on electroencephalographic signals. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  R Quian Quiroga,et al.  Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  W. Shankle,et al.  A new EEG method for estimating cortical neuronal impairment that is sensitive to early stage Alzheimer's disease , 2002, Clinical Neurophysiology.

[38]  J. D. Hunter,et al.  Amplitude and frequency dependence of spike timing: implications for dynamic regulation. , 2003, Journal of neurophysiology.

[39]  Yutaka Sakai,et al.  Synchronous Firing and Higher-Order Interactions in Neuron Pool , 2003, Neural Computation.

[40]  Paul H. E. Tiesinga,et al.  A New Correlation-Based Measure of Spike Timing Reliability , 2002, Neurocomputing.

[41]  M. Rowan,et al.  Memory-related EEG power and coherence reductions in mild Alzheimer's disease. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[42]  D. Aronov Fast algorithm for the metric-space analysis of simultaneous responses of multiple single neurons , 2003, Journal of Neuroscience Methods.

[43]  C. Koch,et al.  A framework for consciousness , 2003, Nature Neuroscience.

[44]  Carl E. Rasmussen,et al.  Prediction on Spike Data Using Kernel Algorithms , 2003, NIPS.

[45]  H. Robinson The Biophysical Basis of Firing Variability in Cortical Neurons , 2003 .

[46]  Claire Martin,et al.  Learning Modulation of Odor-Induced Oscillatory Responses in the Rat Olfactory Bulb: A Correlate of Odor Recognition? , 2004, The Journal of Neuroscience.

[47]  N. Crone,et al.  Attention to a painful cutaneous laser stimulus modulates electrocorticographic event-related desynchronization in humans , 2004, Clinical Neurophysiology.

[48]  Jaeseung Jeong EEG dynamics in patients with Alzheimer's disease , 2004, Clinical Neurophysiology.

[49]  Don H. Johnson,et al.  Information-Theoretic Analysis of Neural Coding , 2004, Journal of Computational Neuroscience.

[50]  K. Pakdaman,et al.  Random dynamics of the Morris-Lecar neural model. , 2004, Chaos.

[51]  Paul H. E. Tiesinga,et al.  Rapid Temporal Modulation of Synchrony by Competition in Cortical Interneuron Networks , 2004, Neural Computation.

[52]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[53]  Fredric J. Harris,et al.  Multirate Signal Processing for Communication Systems , 2004 .

[54]  H.-A. Loeliger,et al.  An introduction to factor graphs , 2004, IEEE Signal Process. Mag..

[55]  Yoram Singer,et al.  Spikernels: Predicting Arm Movements by Embedding Population Spike Rate Patterns in Inner-Product Spaces , 2005, Neural Computation.

[56]  Richard G. Baraniuk,et al.  Fast reconstruction of piecewise smooth signals from random projections , 2005 .

[57]  Maren Grigutsch,et al.  EEG oscillations and wavelet analysis , 2005 .

[58]  C. Stam,et al.  Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field , 2005, Clinical Neurophysiology.

[59]  R. Gervais,et al.  Blind Source Separation and Sparse Bump Modelling of Time Frequency Representation of Eeg Signals: New Tools for Early Detection of Alzheimer's Disease , 2022 .

[60]  Devavrat Shah,et al.  Maximum weight matching via max-product belief propagation , 2005, ISIT.

[61]  E. Harth,et al.  Electric Fields of the Brain: The Neurophysics of Eeg , 2005 .

[62]  J. Tropp,et al.  SIGNAL RECOVERY FROM PARTIAL INFORMATION VIA ORTHOGONAL MATCHING PURSUIT , 2005 .

[63]  Rodrigo Quian Quiroga,et al.  Nonlinear multivariate analysis of neurophysiological signals , 2005, Progress in Neurobiology.

[64]  A. Cichocki,et al.  EEG filtering based on blind source separation (BSS) for early detection of Alzheimer's disease , 2005, Clinical Neurophysiology.

[65]  F. Vialatte Modélisation en bosses pour l'analyse de motifs oscillatoires reproductibles dans l'activité de populations neuronales: applications à l'apprentissage olfactif chez l'animal et à la détection précoce de la maladie d'Alzheimer , 2005 .

[66]  J. Cui,et al.  Time-frequency analysis of visual evoked potentials using chirplet transform , 2005 .

[67]  A. Kohn,et al.  Measuring spike pattern reliability with the Lempel–Ziv-distance , 2006, Journal of Neuroscience Methods.

[68]  Willy Wong,et al.  The adaptive chirplet transform and visual evoked potentials , 2006, IEEE Transactions on Biomedical Engineering.

[69]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[70]  Hiroyuki Kitajima,et al.  Bifurcations in Morris-Lecar neuron model , 2006, Neurocomputing.

[71]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[72]  Benjamin Schrauwen,et al.  Linking non-binned spike train kernels to several existing spike train metrics , 2006, ESANN.

[73]  G. Buzsáki Rhythms of the brain , 2006 .

[74]  Richard Baraniuk,et al.  Compressed Sensing Reconstruction via Belief Propagation , 2006 .

[75]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[76]  Joel A. Tropp,et al.  Algorithmic linear dimension reduction in the l_1 norm for sparse vectors , 2006, ArXiv.

[77]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[78]  Antonio Politi,et al.  Measuring spike train synchrony , 2007, Journal of Neuroscience Methods.

[79]  Andrzej Cichocki,et al.  Statistical Modeling and Analysis of Laser-Evoked Potentials of Electrocorticogram Recordings from Awake Humans , 2007, Comput. Intell. Neurosci..

[80]  L. Demanet,et al.  Wave atoms and sparsity of oscillatory patterns , 2007 .

[81]  Rémi Gervais,et al.  A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics , 2007, Neural Networks.

[82]  Li Ping,et al.  The Factor Graph Approach to Model-Based Signal Processing , 2007, Proceedings of the IEEE.

[83]  Sujay Sanghavi Equivalence of LP Relaxation and Max-Product for Weighted Matching in General Graphs , 2007, 2007 IEEE Information Theory Workshop.

[84]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[85]  Andrzej Cichocki,et al.  Measuring Neural Synchrony by Message Passing , 2007, NIPS.

[86]  Bert Huang,et al.  Loopy Belief Propagation for Bipartite Maximum Weight b-Matching , 2007, AISTATS.

[87]  Dmitry M. Malioutov,et al.  Linear programming analysis of loopy belief propagation for weighted matching , 2007, NIPS.

[88]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[89]  Godfrey L. Smith,et al.  S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes. , 2007, Cell calcium.

[90]  Jonathan D. Victor,et al.  Dynamic programming algorithms for comparing multineuronal spike trains via cost-based metrics and alignments , 2007, Journal of Neuroscience Methods.

[91]  R. Chapman,et al.  Brain event-related potentials: Diagnosing early-stage Alzheimer's disease , 2007, Neurobiology of Aging.

[92]  C. Borgs,et al.  On the exactness of the cavity method for weighted b-matchings on arbitrary graphs and its relation to linear programs , 2008, 0807.3159.

[93]  Sunita Sarawagi Learning with Graphical Models , 2008 .

[94]  Shin Ishii,et al.  On the Synchrony of Morphological and Molecular Signaling Events in Cell Migration , 2008, ICONIP.

[95]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[96]  T. Sejnowski,et al.  Regulation of spike timing in visual cortical circuits , 2008, Nature Reviews Neuroscience.

[97]  Richard G. Baraniuk,et al.  Bayesian Compressive Sensing Via Belief Propagation , 2008, IEEE Transactions on Signal Processing.

[98]  Shy Shoham,et al.  Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains , 2010, Comput. Intell. Neurosci..

[99]  Andrzej Cichocki,et al.  A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG , 2010, NeuroImage.

[100]  Jr. G. Forney,et al.  Viterbi Algorithm , 1973, Encyclopedia of Machine Learning.

[101]  Christian Borgs,et al.  Belief Propagation for Weighted b-Matchings on Arbitrary Graphs and its Relation to Linear Programs with Integer Solutions , 2007, SIAM J. Discret. Math..