Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology

Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to perform well. These niching parameters, often used to inform a niching algorithm how far apart between two closest optima or the number of optima in the search space, are typically difficult to set as they are problem dependent. This paper describes a simple yet effective niching algorithm, a particle swarm optimization (PSO) algorithm using a ring neighborhood topology, which does not require any niching parameters. A PSO algorithm using the ring topology can operate as a niching algorithm by using individual particles' local memories to form a stable network retaining the best positions found so far, while these particles explore the search space more broadly. Given a reasonably large population uniformly distributed in the search space, PSO algorithms using the ring topology are able to form stable niches across different local neighborhoods, eventually locating multiple global/local optima. The complexity of these niching algorithms is only O(N), where N is the population size. Experimental results suggest that PSO algorithms using the ring topology are able to provide superior and more consistent performance over some existing PSO niching algorithms that require niching parameters.

[1]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[2]  A. Engelbrecht,et al.  Using vector operations to identify niches for particle swarm optimization , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[3]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[4]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[5]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[6]  Ofer M. Shir,et al.  Niche Radius Adaptation in the CMA-ES Niching Algorithm , 2006, PPSN.

[7]  Xin Yao,et al.  A dilemma for fitness sharing with a scaling function , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[8]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[9]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[10]  G. Sullivan Natural and artificial low-level seeing systems - Visual interpretation of known objects in constrained scenes , 1992 .

[11]  Benjamin Jeyasurya Computational Swarm Intelligence: An Overview and Applications , 2008 .

[12]  Günter Neumann,et al.  Interleaving Natural Language Parsing and Generation Through Uniform Processing , 1998, Artif. Intell..

[13]  David H. Ackley,et al.  An empirical study of bit vector function optimization , 1987 .

[14]  Yuval Davidor,et al.  A Naturally Occurring Niche and Species Phenomenon: The Model and First Results , 1991, ICGA.

[15]  Xiaodong Li,et al.  This article has been accepted for inclusion in a future issue. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation , 2022 .

[16]  Ralph R. Martin,et al.  A Sequential Niche Technique for Multimodal Function Optimization , 1993, Evolutionary Computation.

[17]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[18]  Xiaodong Li,et al.  Adaptively choosing niching parameters in a PSO , 2006, GECCO.

[19]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[20]  Xiaodong Li,et al.  Enhancing the robustness of a speciation-based PSO , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[21]  Kalyanmoy Deb,et al.  Comparison of multi-modal optimization algorithms based on evolutionary algorithms , 2006, GECCO.

[22]  Martin Middendorf,et al.  On Trajectories of Particles in PSO , 2007, 2007 IEEE Swarm Intelligence Symposium.

[23]  P. John Clarkson,et al.  Erratum: A Species Conserving Genetic Algorithm for Multimodal Function Optimization , 2003, Evolutionary Computation.

[24]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[25]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[26]  Kalyanmoy Deb,et al.  Massive Multimodality, Deception, and Genetic Algorithms , 1992, PPSN.

[27]  Alain Pétrowski,et al.  A clearing procedure as a niching method for genetic algorithms , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[28]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[29]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[30]  K. Koper,et al.  Multimodal function optimization with a niching genetic algorithm: A seismological example , 1999, Bulletin of the Seismological Society of America.

[31]  Frans van den Bergh,et al.  A NICHING PARTICLE SWARM OPTIMIZER , 2002 .

[32]  Márk Jelasity,et al.  GAS, A Concept on Modeling Species in Genetic Algorithms , 1998, Artif. Intell..

[33]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[34]  Patrick Siarry,et al.  Island Model Cooperating with Speciation for Multimodal Optimization , 2000, PPSN.

[35]  D. J. Cavicchio,et al.  Adaptive search using simulated evolution , 1970 .

[36]  Michael N. Vrahatis,et al.  Modification of the Particle Swarm Optimizer for Locating All the Global Minima , 2001 .

[37]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[38]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[39]  Andries Petrus Engelbrecht,et al.  Locating multiple optima using particle swarm optimization , 2007, Appl. Math. Comput..

[40]  R. Brits,et al.  Solving systems of unconstrained equations using particle swarm optimization , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[41]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[42]  Xiaodong Li,et al.  A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio , 2007, GECCO '07.

[43]  J. Kennedy Stereotyping: improving particle swarm performance with cluster analysis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[44]  Andries Petrus Engelbrecht,et al.  Niching ability of basic particle swarm optimization algorithms , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[45]  Bruno Sareni,et al.  Fitness sharing and niching methods revisited , 1998, IEEE Trans. Evol. Comput..

[46]  Xiaodong Yin,et al.  A Fast Genetic Algorithm with Sharing Scheme Using Cluster Analysis Methods in Multimodal Function Optimization , 1993 .

[47]  Xiaodong Li,et al.  Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization , 2004, GECCO.

[48]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[49]  Z. A. Perry Experimental study of speciation in ecological niche theory using genetic algorithms , 1984 .

[50]  Xiaodong Li,et al.  Rotated test problems for assessing the performance of multi-objective optimization algorithms , 2006, GECCO.