Investigating the existence of function roots using particle swarm optimization

The existence of roots of functions is a topic of major significance in nonlinear analysis, and it is directly related to the problem of detection of extrema of a function. The topological degree of a function is a mathematical tool of great importance for investigating the existence and the number of roots of a function with certainty. For the computation of the topological degree according to Stenger's theorem, a sufficient refinement of the boundary of the polyhedron under consideration is needed. The sufficient refinement can be computed using the optimal complexity algorithm of Boult and Sikorski. However, the application of this algorithm requires the computation of the infinity norm on the boundary of the polyhedron under consideration as well as an estimation of the Lipschitz constant of the function. We introduced a new technique for the computation of the infinity norm on the polyhedron's boundary as well as for the estimation of the Lipschitz constant. The proposed approach is illustrated on several test problems and the results are reported and discussed.

[1]  M. A. Abido Optimal des'ign of Power System Stabilizers Using Particle Swarm Opt'imization , 2002, IEEE Power Engineering Review.

[2]  A. Cockshott,et al.  Improving the fermentation medium for Echinocandin B production part II: Particle swarm optimization , 2001 .

[3]  James Kennedy,et al.  The Behavior of Particles , 1998, Evolutionary Programming.

[4]  M N Vrahatis,et al.  A rapid Generalized Method of Bisection for solving Systems of Non-linear Equations , 1986 .

[5]  Michael N. Vrahatis,et al.  Particle swarm optimization for integer programming , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[6]  Martin Stynes On the construction of sufficient refinements for computation of topological degree , 1981 .

[7]  P. Fourie,et al.  The particle swarm optimization algorithm in size and shape optimization , 2002 .

[8]  Baker Kearfott,et al.  An efficient degree-computation method for a generalized method of bisection , 1979 .

[9]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[10]  Arnold Neumaier,et al.  Existence Verification for Singular Zeros of Complex Nonlinear Systems , 2000, SIAM J. Numer. Anal..

[11]  Martin Stynes,et al.  An algorithm for numerical calculation of topological degree , 1979 .

[12]  Michael N. Vrahatis,et al.  Structure and Breakdown of Invariant Tori in a 4-D Mapping Model of Accelerator Dynamics , 1997 .

[13]  Terrance E. Boult,et al.  An Optimal Complexity Algorithm for Computing the Topological Degree in Two Dimensions , 1989 .

[14]  Misako Yokoyama Computing the Topological Degree with Noisy Information , 1997, J. Complex..

[15]  D. Agrafiotis,et al.  Feature selection for structure-activity correlation using binary particle swarms. , 2002, Journal of medicinal chemistry.

[16]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[17]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[18]  Michael N. Vrahatis,et al.  Solving systems of nonlinear equations using the nonzero value of the topological degree , 1988, TOMS.

[19]  Konstantinos E. Parsopoulos,et al.  Initializing the Particle Swarm Optimizer Using the Nonlinear Simplex Method , 2002 .

[20]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[21]  Michael N. Vrahatis,et al.  The topological degree theory for the localization and computation of complex zeros of bessel functions , 1997 .

[22]  Michael N. Vrahatis,et al.  Particle Swarm Optimization Method for Constrained Optimization Problems , 2002 .

[23]  K. Parsopoulos,et al.  Stretching technique for obtaining global minimizers through Particle Swarm Optimization , 2001 .

[24]  M. N. Vrahatis,et al.  Objective function “stretching” to alleviate convergence to local minima , 2001 .

[25]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[26]  Michael N. Vrahatis,et al.  Locating and Computing All the Simple Roots and Extrema of a Function , 1996, SIAM J. Sci. Comput..

[27]  Marco Dorigo,et al.  From Natural to Artificial Swarm Intelligence , 1999 .

[28]  M. N. Vrahatis,et al.  Particle Identification by Light Scattering through Evolutionary Algorithms , 2002 .

[29]  Michael N. Vrahatis,et al.  On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree , 2002, J. Complex..

[30]  W Z Lu,et al.  Analysis of Pollutant Levels in Central Hong Kong Applying Neural Network Method with Particle Swarm Optimization , 2002, Environmental monitoring and assessment.

[31]  Michael N. Vrahatis,et al.  PERIODIC ORBITS AND INVARIANT SURFACES OF 4D NONLINEAR MAPPINGS , 1996 .

[32]  Oliver Aberth Computation of topological degree using interval arithmetic, and applications , 1994 .

[33]  Michael N. Vrahatis,et al.  Particle swarm optimization for minimax problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[34]  Michael N. Vrahatis,et al.  A short proof and a generalization of Miranda’s existence theorem , 1989 .

[35]  Frank Stenger,et al.  Computing the topological degree of a mapping inRn , 1975 .

[36]  Hazim El-Mounayri,et al.  NC end milling optimiza-tion using evolutionary computation , 2002 .

[37]  Tapabrata Ray,et al.  A Swarm Metaphor for Multiobjective Design Optimization , 2002 .

[38]  E. Biscaia,et al.  The use of particle swarm optimization for dynamical analysis in chemical processes , 2002 .

[39]  Michael N. Vrahatis,et al.  Locating and Computing Arbitrarily Distributed Zeros , 1999, SIAM J. Sci. Comput..

[40]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[41]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[42]  Michael N. Vrahatis,et al.  An efficient method for locating and computing periodic orbits of nonlinear mappings , 1995 .

[43]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[44]  Terrance E. Boult,et al.  Complexity of computing topological degree of lipschitz functions in n dimensions , 1986, J. Complex..

[45]  Emile Picard Sur le nombre des racines communes à plusieurs équations simultanées , 1889 .

[46]  Michael N. Vrahatis,et al.  Computing periodic orbits of nondifferentiable/discontinuous mappings through particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[47]  Christopher A. Sikorski Optimal solution of nonlinear equations , 1985, J. Complex..

[48]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[49]  Imtiaz Ahmad,et al.  Particle swarm optimization for task assignment problem , 2002, Microprocess. Microsystems.

[50]  Martin Stynes A simplification of Stenger's topological degree formula , 1979 .