Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification

Analysis of high dimensional data in modern applications, such as neuroscience, text mining, spectral analysis, chemometrices naturally requires tensor decomposition methods. The Tucker decompositions allow us to extract hidden factors (component matrices) with different dimension in each mode, and investigate interactions among various modalities. The alternating least squares (ALS) algorithms have been confirmed effective and efficient in most of tensor decompositions, especially Tucker with orthogonality constraints. However, for nonnegative Tucker decomposition (NTD), standard ALS algorithms suffer from unstable convergence properties, demand high computational cost for large scale problems due to matrix inverse, and often return suboptimal solutions. Moreover they are quite sensitive with respect to noise, and can be relatively slow in the special case when data are nearly collinear. In this paper, we propose a new algorithm for nonnegative Tucker decomposition based on constrained minimization of a set of local cost functions and hierarchical alternating least squares (HALS). The developed NTD-HALS algorithm sequentially updates components, hence avoids matrix inverse, and is suitable for large-scale problems. The proposed algorithm is also regularized with additional constraint terms such as sparseness, orthogonality, smoothness, and especially discriminant. Extensive experiments confirm the validity and higher performance of the developed algorithm in comparison with other existing algorithms.

[1]  Jimeng Sun,et al.  MultiVis: Content-Based Social Network Exploration through Multi-way Visual Analysis , 2009, SDM.

[2]  Tamara G. Kolda,et al.  The MATLAB tensor toolbox for efficient computations with sparse and factored tensors. , 2007 .

[3]  J. Kruskal,et al.  A two-stage procedure incorporating good features of both trilinear and quadrilinear models , 1989 .

[4]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[5]  L. Lathauwer,et al.  Dimensionality reduction in higher-order signal processing and rank-(R1,R2,…,RN) reduction in multilinear algebra , 2004 .

[6]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[7]  A. R. De Pierro,et al.  On the relation between the ISRA and the EM algorithm for positron emission tomography , 1993, IEEE Trans. Medical Imaging.

[8]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[9]  Liqing Zhang,et al.  Noninvasive BCIs: Multiway Signal-Processing Array Decompositions , 2008, Computer.

[10]  Salah Bourennane,et al.  Multidimensional filtering based on a tensor approach , 2005, Signal Process..

[11]  M. Daube-Witherspoon,et al.  An Iterative Image Space Reconstruction Algorthm Suitable for Volume ECT , 1986, IEEE Transactions on Medical Imaging.

[12]  Bülent Yener,et al.  Unsupervised Multiway Data Analysis: A Literature Survey , 2009, IEEE Transactions on Knowledge and Data Engineering.

[13]  Inderjit S. Dhillon,et al.  Generalized Nonnegative Matrix Approximations with Bregman Divergences , 2005, NIPS.

[14]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[15]  Andrzej Cichocki,et al.  Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization , 2007, ICA.

[16]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part III: Alternating Least Squares Algorithms , 2008, SIAM J. Matrix Anal. Appl..

[17]  Tamara G. Kolda,et al.  Pattern Analysis of Directed Graphs Using DEDICOM: An Application to Enron Email , 2006 .

[18]  Andrzej Cichocki,et al.  Non-Negative Tensor Factorization using Alpha and Beta Divergences , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[19]  Jimeng Sun,et al.  SmallBlue: Social Network Analysis for Expertise Search and Collective Intelligence , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[20]  VandewalleJoos,et al.  On the Best Rank-1 and Rank-(R1,R2,. . .,RN) Approximation of Higher-Order Tensors , 2000 .

[21]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[22]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[23]  Mila Nikolova,et al.  Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..

[24]  Andrzej Cichocki,et al.  Fast and Efficient Algorithms for Nonnegative Tucker Decomposition , 2008, ISNN.

[25]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[26]  Lars Kai Hansen,et al.  Algorithms for Sparse Nonnegative Tucker Decompositions , 2008, Neural Computation.

[27]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[28]  Philip S. Yu,et al.  Incremental tensor analysis: Theory and applications , 2008, TKDD.

[29]  Tamara G. Kolda,et al.  Multilinear Algebra for Analyzing Data with Multiple Linkages , 2006, Graph Algorithms in the Language of Linear Algebra.

[30]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[31]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part I: Lemmas for Partitioned Matrices , 2008, SIAM J. Matrix Anal. Appl..

[32]  Vincent N. LaRiccia,et al.  Maximum Smoothed Likelihood Density Estimation for Inverse Problems , 1995 .

[33]  Tamara G. Kolda,et al.  Temporal Analysis of Social Networks using Three-way DEDICOM , 2006 .

[34]  Seungjin Choi,et al.  Nonnegative Tucker Decomposition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[36]  Andrzej Cichocki,et al.  Analysis of Interactions Among Hidden Components for Tucker Model , 2009 .

[37]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[38]  P. Gács,et al.  Algorithms , 1992 .

[39]  C. D. Meyer,et al.  Initializations for the Nonnegative Matrix Factorization , 2006 .

[40]  Tamara G. Kolda,et al.  Link Prediction on Evolving Data Using Matrix and Tensor Factorizations , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[41]  A. Cichocki,et al.  Flexible HALS algorithms for sparse non-negative matrix/tensor factorization , 2008, 2008 IEEE Workshop on Machine Learning for Signal Processing.

[42]  David J. Marchette,et al.  Scan Statistics on Enron Graphs , 2005, Comput. Math. Organ. Theory.

[43]  Andrzej Cichocki,et al.  Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations , 2009, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[44]  A. Cichocki,et al.  Generalizing the column–row matrix decomposition to multi-way arrays , 2010 .

[45]  C. Harris Problems in measuring change , 1965 .

[46]  Raymond H. Chan,et al.  Continuation method for total variation denoising problems , 1995, Optics & Photonics.

[47]  Liqing Zhang,et al.  Flexible Component Analysis for Sparse, Smooth, Nonnegative Coding or Representation , 2007, ICONIP.

[48]  Tamara G. Kolda,et al.  Temporal Analysis of Semantic Graphs Using ASALSAN , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[49]  Andrzej Cichocki,et al.  Extraction and classification of common independent components in single-trial crossmodal cortical responses , 2010 .

[50]  P. Hopke,et al.  Application of modified alternating least squares regression to spectroscopic image analysis , 2003 .

[51]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[52]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[53]  H. Lantéri,et al.  COMPARISON BETWEEN ISRA AND RLA ALGORITHMS. USE OF A WIENER FILTER BASED STOPPING CRITERION , 1999 .

[54]  Ji-Hong Wang,et al.  Discriminant image resolution: a novel multivariate image analysis method utilizing a spatial classification constraint in addition to bilinear nonnegativity , 2005 .

[55]  Brett W. Bader,et al.  The TOPHITS Model for Higher-Order Web Link Analysis∗ , 2006 .

[56]  S YuPhilip,et al.  Incremental tensor analysis , 2008 .