Noninvasive BCIs: Multiway Signal-Processing Array Decompositions

In addition to helping better understand how the human brain works, the brain-computer interface neuroscience paradigm allows researchers to develop a new class of bioengineering control devices and robots, offering promise for rehabilitation and other medical applications as well as exploring possibilities for advanced human-computer interfaces.

[1]  Klaus-Robert Müller,et al.  Machine Learning and Applications for Brain-Computer Interfacing , 2007, HCI.

[2]  Nikolaos G. Bourbakis,et al.  Neural Network Approach for Image chromatic Adaptation for Skin Color Detection , 2007, Int. J. Neural Syst..

[3]  Andrzej Cichocki,et al.  Adaptive blind signal and image processing , 2002 .

[4]  Motoaki Kawanabe,et al.  Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing , 2007, NIPS.

[5]  G. Pfurtscheller,et al.  15 years of BCI research at graz university of technology: current projects , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[6]  Xiaorong Gao,et al.  Design and implementation of a brain-computer interface with high transfer rates , 2002, IEEE Transactions on Biomedical Engineering.

[7]  Yuanqing Li,et al.  Blind estimation of channel parameters and source components for EEG signals: a sparse factorization approach , 2006, IEEE Transactions on Neural Networks.

[8]  Andrzej Cichocki,et al.  Nonnegative Tucker decomposition with alpha-divergence , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[9]  Brendan Z. Allison,et al.  Brain-Computer Interfaces , 2010 .

[10]  Jimeng Sun,et al.  Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.

[11]  Jonathan R. Wolpaw,et al.  Brain-computer interfaces (BCIs) for communication and control , 2007, Assets '07.

[12]  L. K. Hansen,et al.  Algorithms for Sparse Non-negative Tucker decompositions , 2008 .

[13]  A. Cichocki,et al.  Flexible HALS algorithms for sparse non-negative matrix/tensor factorization , 2008, 2008 IEEE Workshop on Machine Learning for Signal Processing.

[14]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[15]  Andrzej Cichocki,et al.  Nonnegative Tensor Factorization for Continuous EEG Classification , 2007, Int. J. Neural Syst..

[16]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[17]  P R Kennedy,et al.  Direct control of a computer from the human central nervous system. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[18]  Andrzej Cichocki,et al.  Fully Online Multicommand Brain-Computer Interface with Visual Neurofeedback Using SSVEP Paradigm , 2007, Comput. Intell. Neurosci..

[19]  Andrzej Cichocki,et al.  Fast and Efficient Algorithms for Nonnegative Tucker Decomposition , 2008, ISNN.

[20]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces , 2007, Journal of neural engineering.

[21]  Fabio Babiloni,et al.  Brain-Computer Interfaces: Towards Practical Implementations and Potential Applications , 2007, Comput. Intell. Neurosci..

[22]  Allan Kardec Barros,et al.  Auditory Feedback for Brain Computer Interface Management - An EEG Data Sonification Approach , 2006, KES.

[23]  Lars Kai Hansen,et al.  Algorithms for Sparse Nonnegative Tucker Decompositions , 2008, Neural Computation.

[24]  Andrzej Cichocki,et al.  Nonnegative Matrix Factorization for Motor Imagery EEG Classification , 2006, ICANN.

[25]  Andrzej Cichocki,et al.  Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .

[26]  Paul Sajda,et al.  Brain-Computer Interfaces [from the guest editors] , 2008 .

[27]  Andrzej Cichocki,et al.  Novel Multi-layer Non-negative Tensor Factorization with Sparsity Constraints , 2007, ICANNGA.

[28]  Rasmus Bro,et al.  Multiway analysis of epilepsy tensors , 2007, ISMB/ECCB.