Brain Mapping Using Topology Graphs Obtained by Surface Segmentation

Brain mapping is a technique used to alleviate the tedious and time-consuming process of annotating brains by mapping existing annotations from brain atlases to individual brains. We introduce an automated surface-based brain mapping approach. After reconstructing a volume data set (trivariate scalar field) from raw imaging data, an isosurface is extracted approximating the brain cortex. The cortical surface can be segmented into gyral and sulcal regions by exploiting geometrical properties. Our surface segmentation is executed at a coarse level of resolution, such that discrete curvature estimates can be used to detect cortical regions. The topological information obtained from the surface segmentation is stored in a topology graph. A topology graph contains a high-level representation of the geometrical regions of a brain cortex. By deriving topology graphs for both atlas brain and individual brains, a graph node matching defines a mapping of brain cortex regions and their annotations.

[1]  Fred L. Bookstein,et al.  Thin-Plate Splines and the Atlas Problem for Biomedical Images , 1991, IPMI.

[2]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Greg Turk,et al.  Fast and memory efficient polygonal simplification , 1998 .

[4]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[5]  D. Louis Collins,et al.  Automated 3D nonlinear deformation procedure for determination of gross morphometric variability in human brain , 1994, Other Conferences.

[6]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[7]  Bernd Hamann,et al.  Hierarchical Isosurface Segmentation Based on Discrete Curvature , 2003, VisSym.

[8]  Jean-Francois Mangin,et al.  Automatic Recognition of Cortical Sulci Using a Congregation of Neural Networks , 2000, MICCAI.

[9]  Christian Barillot,et al.  Robust 3D Segmentation of Anatomical Structures with Level Sets , 2000, MICCAI.

[10]  Gabriele Lohmann,et al.  Automatic labelling of the human cortical surface using sulcal basins , 2000, Medical Image Anal..

[11]  John W. Harwell,et al.  Surface-Based Atlases and a Database of Cortical Structure and Function , 2003 .

[12]  Pierre Hellier,et al.  Coupling dense and landmark-based approaches for nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[13]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[14]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[15]  Paul M. Thompson,et al.  Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations , 1997, Medical Image Anal..

[16]  R. Rabbitt,et al.  3D brain mapping using a deformable neuroanatomy. , 1994, Physics in medicine and biology.

[17]  D. Louis Collins,et al.  Non-linear Cerebral Registration with Sulcal Constraints , 1998, MICCAI.

[18]  Richard M. Leahy,et al.  Surface-based labeling of cortical anatomy using a deformable atlas , 1997, IEEE Transactions on Medical Imaging.

[19]  D. Louis Collins,et al.  Automated extraction and variability analysis of sulcal neuroanatomy , 1999, IEEE Transactions on Medical Imaging.

[20]  T. Greitz,et al.  A computerized brain atlas: construction, anatomical content, and some applications. , 1991, Journal of computer assisted tomography.

[21]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[22]  Joerg Meyer,et al.  Aligning Large-scale Medical and Biological Data Sets: Exploring a Monkey Brain , 2001, VIIP.

[23]  Bernd Hamann,et al.  Curvature Approximation for Triangulated Surfaces , 1993, Geometric Modelling.

[24]  Hartmut Noltemeier,et al.  Geometric Modelling , 1998, Computing Supplement.

[25]  Jean-Francois Mangin,et al.  Multisubject Non-rigid Registration of Brain MRI Using Intensity and Geometric Features , 2001, MICCAI.

[26]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[27]  Christos Davatzikos,et al.  Hierarchical Matching of Cortical Features for Deformable Brain Image Registration , 1999, IPMI.

[28]  R. Bajcsy,et al.  Elastically Deforming 3D Atlas to Match Anatomical Brain Images , 1993, Journal of computer assisted tomography.

[29]  Simon K. Warfield,et al.  Labeling the Brain Surface Using a Deformable Multiresolution Mesh , 2002, MICCAI.

[30]  Rémi Ronfard,et al.  Full‐range approximation of triangulated polyhedra. , 1996, Comput. Graph. Forum.

[31]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[32]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .