Hierarchical Isosurface Segmentation Based on Discrete Curvature

A high-level approach to describe the characteristics of a surface is to segment it into regions of uniform curvature behavior and construct an abstract representation given by a (topology) graph. We propose a surface segmentation method based on discrete mean and Gaussian curvature estimates. The surfaces are obtained from three-dimensional imaging data sets by isosurface extraction after data presmoothing and postprocessing the isosurfaces by a surface-growing algorithm. We generate a hierarchical multiresolution representation of the isosurface. Segmentation and graph generation algorithms can be performed at various levels of detail. At a coarse level of detail, the algorithm detects the main features of the surface. This low-resolution description is used to determine constraints for the segmentation and graph generation at the higher resolutions. We have applied our methods to MRI data sets of human brains. The hierarchical segmentation framework can be used for brain-mapping purposes.

[1]  Fred L. Bookstein,et al.  Thin-Plate Splines and the Atlas Problem for Biomedical Images , 1991, IPMI.

[2]  Gábor Székely,et al.  Mapping the human cerebral cortex using 3-D medial manifolds , 1992, Other Conferences.

[3]  Isabelle Bloch,et al.  Automatic construction of an attributed relational graph representing the cortex topography using homotopic transformations , 1994, Optics & Photonics.

[4]  Ross T. Whitaker,et al.  Partitioning 3D Surface Meshes Using Watershed Segmentation , 1999, IEEE Trans. Vis. Comput. Graph..

[5]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[6]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[7]  Christian Barillot,et al.  Robust 3D Segmentation of Anatomical Structures with Level Sets , 2000, MICCAI.

[8]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[10]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[11]  Rémi Ronfard,et al.  Full‐range approximation of triangulated polyhedra. , 1996, Comput. Graph. Forum.

[12]  R. Rabbitt,et al.  3D brain mapping using a deformable neuroanatomy. , 1994, Physics in medicine and biology.

[13]  T. Greitz,et al.  A computerized brain atlas: construction, anatomical content, and some applications. , 1991, Journal of computer assisted tomography.

[14]  D. Louis Collins,et al.  Automated 3D nonlinear deformation procedure for determination of gross morphometric variability in human brain , 1994, Other Conferences.

[15]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[16]  Richard M. Leahy,et al.  Surface-based labeling of cortical anatomy using a deformable atlas , 1997, IEEE Transactions on Medical Imaging.

[17]  Christos Davatzikos,et al.  Hierarchical Matching of Cortical Features for Deformable Brain Image Registration , 1999, IPMI.

[18]  Nelson L. Max,et al.  Weights for Computing Vertex Normals from Facet Normals , 1999, J. Graphics, GPU, & Game Tools.

[19]  Bernd Hamann,et al.  Curvature Approximation for Triangulated Surfaces , 1993, Geometric Modelling.

[20]  J C Mazziotta,et al.  Automated labeling of the human brain: A preliminary report on the development and evaluation of a forward‐transform method , 1997, Human brain mapping.

[21]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[22]  Bernd Hamann,et al.  A data reduction scheme for triangulated surfaces , 1994, Comput. Aided Geom. Des..

[23]  D. Louis Collins,et al.  Non-linear Cerebral Registration with Sulcal Constraints , 1998, MICCAI.

[24]  Gabriele Lohmann,et al.  Automatic labelling of the human cortical surface using sulcal basins , 2000, Medical Image Anal..

[25]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[26]  Simon K. Warfield,et al.  Labeling the Brain Surface Using a Deformable Multiresolution Mesh , 2002, MICCAI.

[27]  Joerg Meyer,et al.  Aligning Large-scale Medical and Biological Data Sets: Exploring a Monkey Brain , 2001, VIIP.

[28]  Jean-Francois Mangin,et al.  Multisubject Non-rigid Registration of Brain MRI Using Intensity and Geometric Features , 2001, MICCAI.

[29]  Paul M. Thompson,et al.  Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations , 1997, Medical Image Anal..

[30]  Alan C. Evans,et al.  Anatomical-Functional Correlation Using an Adjustable MRI-Based Region of Interest Atlas with Positron Emission Tomography , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[31]  Jean-Francois Mangin,et al.  Automatic Recognition of Cortical Sulci Using a Congregation of Neural Networks , 2000, MICCAI.

[32]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[33]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[34]  Benoit M. Dawant,et al.  Comparison and evaluation of retrospective intermodality image registration techniques , 1996, Medical Imaging.

[35]  R. Bajcsy,et al.  Elastically Deforming 3D Atlas to Match Anatomical Brain Images , 1993, Journal of computer assisted tomography.

[36]  D. Louis Collins,et al.  Automated extraction and variability analysis of sulcal neuroanatomy , 1999, IEEE Transactions on Medical Imaging.

[37]  Greg Turk,et al.  Fast and memory efficient polygonal simplification , 1998 .

[38]  Pierre Hellier,et al.  Coupling dense and landmark-based approaches for nonrigid registration , 2003, IEEE Transactions on Medical Imaging.