An Overview of Evolutionary Algorithms for Parameter Optimization

Three main streams of evolutionary algorithms (EAs), probabilistic optimization algorithms based on the model of natural evolution, are compared in this article: evolution strategies (ESs), evolutionary programming (EP), and genetic algorithms (GAs). The comparison is performed with respect to certain characteristic components of EAs: the representation scheme of object variables, mutation, recombination, and the selection operator. Furthermore, each algorithm is formulated in a high-level notation as an instance of the general, unifying basic algorithm, and the fundamental theoretical results on the algorithms are presented. Finally, after presenting experimental results for three test functions representing a unimodal and a multimodal case as well as a step function with discontinuities, similarities and differences of the algorithms are elaborated, and some hints to open research questions are sketched.

[1]  John H. Holland,et al.  Outline for a Logical Theory of Adaptive Systems , 1962, JACM.

[2]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[3]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[4]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[5]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[6]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[7]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[8]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  D. E. Goldberg,et al.  Simple Genetic Algorithms and the Minimal, Deceptive Problem , 1987 .

[10]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[11]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[14]  Larry J. Eshelman,et al.  Representation and Hidden Bias II: Eliminating Defining Length Bias in Genetic Search via Shuffle Crossover , 1989, IJCAI.

[15]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[16]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[17]  Larry J. Eshelman,et al.  Biases in the Crossover Landscape , 1989, ICGA.

[18]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[19]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[20]  John J. Grefenstette,et al.  Explanations of Empirically Derived Reactive Plans , 1990, ML.

[21]  D. Fogel System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling , 1991 .

[22]  Thomas Bäck,et al.  Extended Selection Mechanisms in Genetic Algorithms , 1991, ICGA.

[23]  Yuval Davidor,et al.  Genetic Algorithms and Robotics - A Heuristic Strategy for Optimization , 1991, World Scientific Series in Robotics and Intelligent Systems.

[24]  Thomas Bck,et al.  Self-adaptation in genetic algorithms , 1991 .

[25]  Reinhard Männer,et al.  Parallel Problem Solving from Nature 2, PPSN-II, Brussels, Belgium, September 28-30, 1992 , 1992, Parallel Problem Solving from Nature.

[26]  Gnter Rudolph,et al.  Parallel Approaches to Stochastic Global Optimization , 1992 .

[27]  Kenneth A. De Jong,et al.  Are Genetic Algorithms Function Optimizers? , 1992, PPSN.

[28]  David B. Fogel,et al.  Evolving artificial intelligence , 1992 .

[29]  Kalyanmoy Deb,et al.  Massive Multimodality, Deception, and Genetic Algorithms , 1992, PPSN.

[30]  Scott E. Page,et al.  Walsh Functions, Schema Variance, and Deception , 1992, Complex Syst..

[31]  Luc Steels,et al.  The artificial life roots of artificial intelligence , 1993 .

[32]  David B. Fogel,et al.  Parallel problem solving from nature, 2: Proceedings of the Second Conference on parallel problem solving from nature: R. Männer and B. Manderick (eds.), North-Holland, Amsterdam, ISBN 0-444-89730-5, xii + 618pp., US$168.50/Dfl. 295.00 , 1993 .

[33]  H. Schwefel,et al.  Applications of Evolutionary Algorithms , 1993 .

[34]  Kenta Hashimoto World Scientific Series in Robotics and Automated Systems , 1993 .

[35]  R. Lohmann,et al.  A neural network model for the prediction of membrane‐spanning amino acid sequences , 1994, Protein science : a publication of the Protein Society.

[36]  Wirt Atmar,et al.  Notes on the simulation of evolution , 1994, IEEE Trans. Neural Networks.

[37]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[38]  H. Schwefel,et al.  Evolutionäre Algorithmen — ein robustes Optimierkonzept , 1994 .

[39]  Volker Nissen,et al.  Combinations of simulation and Evolutionary Algorithms in management science and economics , 1994, Ann. Oper. Res..