High Precision Constrained Grasping with Cooperative Adaptive Handcontrol

A method for high precision constrained object manoeuvering for non-redundant rigid multifinger hands is proposed. A passivity-based adaptive cooperative control scheme carries out compensation of all uncertain inertial and dynamic friction forces to guarantee asymptotic tracking of all contact forces and joint position-orientation trajectories over orthogonal force- and position-based impedance error manifolds. Optimal internal and external force trajectories are obtained to minimize the contact forces onto the constrained object while exerting a given desired contact force onto the environment. The simulation study of two robot fingers manipulating a constrained object for combined fast and slow velocity regimes shows that when the dynamic friction compensation is turned on tracking errors decrease tenfold.

[1]  Christos H. Papadimitriou,et al.  The Geometry of Grasping , 1990, Int. J. Robotics Res..

[2]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[3]  Roberto Horowitz,et al.  Stability and Robustness Analysis of a Class of Adaptive Controllers for Robotic Manipulators , 1990, Int. J. Robotics Res..

[4]  Tzyh Jong Tarn,et al.  Design of dynamic control of two cooperating robot arms: Closed chain formulation , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[5]  Han Ding,et al.  On the Dynamic Stability of Grasping , 1999, Int. J. Robotics Res..

[6]  Hariharan Krishnan,et al.  Tracking in nonlinear differential-algebraic control systems with applications to constrained robot systems , 1994, Autom..

[7]  C. Canudas-de-Wit Comments on "A new model for control of systems with friction" , 1998, IEEE Trans. Autom. Control..

[8]  Hideki Hashimoto,et al.  Dextrous hand grasping force optimization , 1996, IEEE Trans. Robotics Autom..

[9]  Yuan F. Zheng,et al.  Optimal load distribution for two industrial robots handling a single object , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[10]  Joel W. Burdick,et al.  On force and form closure for multiple finger grasps , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[11]  Kazuo Tanie,et al.  Discontinuous model-based adaptive control for robots executing free and constrained tasks , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[12]  Wen-Han Qian,et al.  On the equivalence of internal and interaction forces in multifingered grasping , 1999, IEEE Trans. Robotics Autom..

[13]  J. Slotine,et al.  On the Adaptive Control of Robot Manipulators , 1987 .

[14]  Romeo Ortega,et al.  An adaptive friction compensator for global tracking in robot manipulators , 1998 .

[15]  Loulin Huang,et al.  Position and Force Control of Two Constrained Robotic Manipulators , 1999, J. Intell. Robotic Syst..

[16]  Kosei Kitagaki,et al.  Decentralized adaptive control of multiple manipulators in co-operations , 1997 .

[17]  N. K. Myshkin,et al.  Simulation of real contact in tribology , 1998 .

[18]  U. Ascher,et al.  Projected implicit Runge-Kutta methods for differential-algebraic equations , 1990 .

[19]  S. Arimoto,et al.  Distributively controlling two robots handling an object in the task space without any communication , 1996, IEEE Trans. Autom. Control..