Progress in blind separation of magnetoencephalographic data

The match between the physics of MEG and the assumptions of the most well developed blind source separation (BSS) algorithms (unknown instantaneous linear mixing process, many sensors compared to expected recoverable sources, large data limit) have tempted researchers to apply these algorithms to MEG data. We review some of these efforts, with particular emphasis on our own work.

[1]  Richard M. Leahy,et al.  Source localization using recursively applied and projected (RAP) MUSIC , 1997 .

[2]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[3]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[4]  C C Wood,et al.  Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. , 1995, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[5]  J. Lewine,et al.  CHAPTER 9 – Magnetoencephalography and Magnetic Source Imaging , 1995 .

[6]  Barak A. Pearlmutter,et al.  An MEG Study of Response Latency and Variability in the Human Visual System During a Visual-Motor Integration Task , 1999, NIPS.

[7]  Terrence J. Sejnowski,et al.  Blind separation and blind deconvolution: an information-theoretic approach , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[8]  Barak A. Pearlmutter,et al.  MEG source localization using an MLP with a distributed output representation , 2003, IEEE Transactions on Biomedical Engineering.

[9]  É. Moulines,et al.  Second Order Blind Separation of Temporally Correlated Sources , 1993 .

[10]  T. Sejnowski,et al.  Removing electroencephalographic artifacts by blind source separation. , 2000, Psychophysiology.

[11]  D. Poeppel,et al.  Magnetoencephalography and magnetic source imaging. , 1998, Neuropsychiatry, neuropsychology, and behavioral neurology.

[12]  Barak A. Pearlmutter,et al.  Independent Components of Magnetoencephalography: Localization , 2002, Neural Computation.

[13]  Andreas Ziehe,et al.  Independent component analysis of noninvasively recorded cortical magnetic DC-fields in humans , 2000, IEEE Transactions on Biomedical Engineering.

[14]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[15]  Barak A. Pearlmutter,et al.  A Context-Sensitive Generalization of ICA , 1996 .

[16]  Erkki Oja,et al.  Independent Component Analysis for Identification of Artifacts in Magnetoencephalographic Recordings , 1997, NIPS.

[17]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[18]  Erkki Oja,et al.  Independent component approach to the analysis of EEG and MEG recordings , 2000, IEEE Transactions on Biomedical Engineering.

[19]  S Makeig,et al.  Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.

[20]  J. Cardoso On the Performance of Orthogonal Source Separation Algorithms , 1994 .

[21]  J. Mäkelä,et al.  Magnetoencephalographic cortical rhythms. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[22]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis , 1997, Neural Computation.

[23]  Barak A. Pearlmutter,et al.  Blind source separation of multichannel neuromagnetic responses , 2000, Neurocomputing.

[24]  Michelle A. Espy,et al.  Performance of a novel squid-based superconducting imaging-surface magnetoencephalography system , 2001 .

[25]  Andreas Ziehe,et al.  Artifact Reduction in Magnetoneurography Based on Time-Delayed Second Order Correlations , 1998 .

[26]  Barak A. Pearlmutter,et al.  Independent components of magnetoencephalography: Localization and single-trial response onset detection , 2002 .

[27]  Tzyy-Ping Jung,et al.  Analyzing and Visualizing Single-Trial Event-Related Potentials , 1998, NIPS.

[28]  Barak A. Pearlmutter,et al.  Fast accurate MEG source localization using a multilayer perceptron trained with real brain noise. , 2002, Physics in medicine and biology.