Robustness of neural ensembles against targeted and random Adversarial Learning

Machine learning has become a prominent tool in various domains owing to its adaptability. However, this adaptability can be taken advantage of by an adversary to cause dysfunction of machine learning; a process known as Adversarial Learning. This paper investigates Adversarial Learning in the context of artificial neural networks. The aim is to test the hypothesis that an ensemble of neural networks trained on the same data manipulated by an adversary would be more robust than a single network. We investigate two attack types: targeted and random. We use Mahalanobis distance and covariance matrices to selected targeted attacks. The experiments use both artificial and UCI datasets. The results demonstrate that an ensemble of neural networks trained on attacked data are more robust against the attack than a single network. While many papers have demonstrated that an ensemble of neural networks is more robust against noise than a single network, the significance of the current work lies in the fact that targeted attacks are not white noise.