Sparse and Balanced Reed–Solomon and Tamo–Barg Codes

We study the problem of constructing balanced generator matrices for Reed–Solomon and Tamo–Barg codes. More specifically, we are interested in realizing generator matrices, for the full-length cyclic versions of these codes, where all rows have the same weight and the difference in weight between any columns is at most one. The results presented in this paper translate to computationally balanced encoding schemes, which can be appealing in distributed storage applications. Indeed, the balancedness of these generator matrices guarantees that the computation effort exerted by any storage node is essentially the same. In general, the framework presented can accommodate various values for the required row weight. We emphasize the possibility of constructing sparsest and balanced generator matrices for Reed–Solomon codes, i.e., each row is a minimum distance codeword. The number of storage nodes contacted once a message symbol is updated decreases with the row weight, so sparse constructions are appealing in that context. Results of similar flavor are presented for cyclic Tamo–Barg codes. In particular, we show that for a code with minimum distance <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula> and locality <inline-formula> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula>, a construction in which every row is of weight <inline-formula> <tex-math notation="LaTeX">$d + r - 1$ </tex-math></inline-formula> is possible. The constructions presented are deterministic and operate over the codes’ original underlying finite field. As a result, efficient decoding from both errors and erasures is possible thanks to the plethora of efficient decoders available for the codes considered.

[1]  Sriram Vishwanath,et al.  Optimal locally repairable codes via rank-metric codes , 2013, 2013 IEEE International Symposium on Information Theory.

[2]  Chau Yuen,et al.  Constructions of MDS codes via random Vandermonde and Cauchy matrices over small fields , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[3]  Vinod M. Prabhakaran,et al.  Decentralized erasure codes for distributed networked storage , 2006, IEEE Transactions on Information Theory.

[4]  A. Robert Calderbank,et al.  Cyclic LRC codes and their subfield subcodes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[5]  Cory Hill,et al.  f4: Facebook's Warm BLOB Storage System , 2014, OSDI.

[6]  Cheng Huang,et al.  On the Locality of Codeword Symbols , 2011, IEEE Transactions on Information Theory.

[7]  Itzhak Tamo,et al.  Optimal Repair of Reed-Solomon Codes: Achieving the Cut-Set Bound , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[8]  Mario Blaum,et al.  On Lowest Density MDS Codes , 1999, IEEE Trans. Inf. Theory.

[9]  Robert McEliece,et al.  The Theory of Information and Coding: Information theory , 2002 .

[10]  Han Mao Kiah,et al.  Repairing reed-solomon codes with two erasures , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[11]  Tracey Ho,et al.  Distributed reed-solomon codes for simple multiple access networks , 2014, 2014 IEEE International Symposium on Information Theory.

[12]  Van-Anh Truong,et al.  Availability in Globally Distributed Storage Systems , 2010, OSDI.

[13]  Babak Hassibi,et al.  Balanced Reed-Solomon codes for all parameters , 2016, 2016 IEEE Information Theory Workshop (ITW).

[14]  Chau Yuen,et al.  On the existence of MDS codes over small fields with constrained generator matrices , 2014, 2014 IEEE International Symposium on Information Theory.

[15]  F. Moore,et al.  Polynomial Codes Over Certain Finite Fields , 2017 .

[16]  Jehoshua Bruck,et al.  Low-density MDS codes and factors of complete graphs , 1998, IEEE Trans. Inf. Theory.

[17]  Babak Hassibi,et al.  Balanced Reed-Solomon codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[18]  Babak Hassibi,et al.  Optimum Linear Codes with Support Constraints over Small Fields , 2018, 2018 IEEE Information Theory Workshop (ITW).

[19]  Babak Hassibi,et al.  Coding with constraints: Minimum distance bounds and systematic constructions , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[20]  Dimitris S. Papailiopoulos,et al.  Locally Repairable Codes , 2014, IEEE Trans. Inf. Theory.

[21]  Shachar Lovett MDS Matrices over Small Fields: A Proof of the GM-MDS Conjecture , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[22]  Dimitris S. Papailiopoulos,et al.  XORing Elephants: Novel Erasure Codes for Big Data , 2013, Proc. VLDB Endow..

[23]  P. Vijay Kumar,et al.  Codes With Local Regeneration and Erasure Correction , 2014, IEEE Transactions on Information Theory.

[24]  Sriram Vishwanath,et al.  Update-efficient codes for erasure correction , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[25]  Chau Yuen,et al.  On Simple Multiple Access Networks , 2015, IEEE Journal on Selected Areas in Communications.

[26]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[27]  Minghua Chen,et al.  Pyramid Codes: Flexible Schemes to Trade Space for Access Efficiency in Reliable Data Storage Systems , 2007, Sixth IEEE International Symposium on Network Computing and Applications (NCA 2007).

[28]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[29]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[30]  Alexander Sprintson,et al.  Weakly secure data exchange with Generalized Reed Solomon codes , 2014, 2014 IEEE International Symposium on Information Theory.

[31]  Chau Yuen,et al.  Balanced Sparsest generator matrices for MDS codes , 2013, 2013 IEEE International Symposium on Information Theory.

[32]  Babak Hassibi,et al.  Balanced and sparse Tamo-Barg codes , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).