Multimodal Integration : fMRI , MRI , EEG , MEG

This chapter provides a comprehensive survey of the motivations, assumptions and pitfalls associated with combining signals such as fMRI with EEG or MEG. Our initial focus in the chapter concerns mathematical approaches for solving the localization problem in EEG and MEG. Next we document the most recent and promising ways in which these signals can be combined with fMRI. Specically, we look at correlative analysis, decomposition techniques, equivalent dipole tting, distributed sources modeling, beamforming, and Bayesian methods. Due to difculties in assessing ground truth of a combined signal in any realistic experiment difculty further confounded by lack of accurate biophysical models of BOLD signal we are cautious to be optimistic about multimodal integration. Nonetheless, as we highlight and explore the technical and methodological difculties of fusing heterogeneous signals, it seems likely that correct fusion of multimodal data will allow previously inaccessible spatiotemporal structures to be visualized and formalized and thus eventually become a useful tool in brain imaging research.

[1]  Monika Sommer,et al.  Combined measurement of event-related potentials (ERPs) and fMRI. , 2003, Acta neurobiologiae experimentalis.

[2]  R J Ilmoniemi,et al.  Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. , 1999, Journal of neurophysiology.

[3]  G. Srivastava,et al.  ICA-based procedures for removing ballistocardiogram artifacts from EEG data acquired in the MRI scanner , 2005, NeuroImage.

[4]  Juha Virtanen,et al.  Activation of multiple cortical areas in response to somatosensory stimulation: Combined magnetoencephalographic and functional magnetic resonance imaging , 1999, Human brain mapping.

[5]  T. Sejnowski,et al.  Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects , 2000, Clinical Neurophysiology.

[6]  R. Leahy,et al.  EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.

[7]  Manfred Fuchs,et al.  Integration of Functional MRI , Structural MRI , EEG , and MEG , 2001 .

[8]  A K Liu,et al.  Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  E. Niedermeyer Alpha rhythms as physiological and abnormal phenomena. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[10]  H. Benali,et al.  Robust Bayesian estimation of the hemodynamic response function in event‐related BOLD fMRI using basic physiological information , 2003, Human brain mapping.

[11]  J. Ford,et al.  Combined event‐related fMRI and EEG evidence for temporal—parietal cortex activation during target detection , 1997, Neuroreport.

[12]  T Landis,et al.  Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography. , 1998, Electroencephalography and clinical neurophysiology.

[13]  Shahrokh Valaee,et al.  Localization of distributed sources , 1993 .

[14]  S Warach,et al.  Monitoring the patient's EEG during echo planar MRI. , 1993, Electroencephalography and clinical neurophysiology.

[15]  Barak A. Pearlmutter,et al.  MEG source localization using an MLP with a distributed output representation , 2003, IEEE Transactions on Biomedical Engineering.

[16]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[17]  F Kruggel,et al.  Recording of the event‐related potentials during functional MRI at 3.0 Tesla field strength , 2000, Magnetic resonance in medicine.

[18]  Fetsje Bijma,et al.  In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head , 2003, IEEE Transactions on Biomedical Engineering.

[19]  J. Bodurka,et al.  Toward direct mapping of neuronal activity: MRI detection of ultraweak, transient magnetic field changes , 2002 .

[20]  S Vanhatalo,et al.  Scalp-recorded slow EEG responses generated in response to hemodynamic changes in the human brain , 2003, Clinical Neurophysiology.

[21]  Scott L. Zeger,et al.  Non‐linear Fourier Time Series Analysis for Human Brain Mapping by Functional Magnetic Resonance Imaging , 1997 .

[22]  Vince D. Calhoun,et al.  ICA of functional MRI data: an overview. , 2003 .

[23]  H. I. Saleheen,et al.  New finite difference formulations for general inhomogeneous anisotropic bioelectric problems , 1997, IEEE Transactions on Biomedical Engineering.

[24]  J. Vrba,et al.  Signal processing in magnetoencephalography. , 2001, Methods.

[25]  R. Granit THE HEART ( Extract from “ Principles and Applications of Bioelectric and Biomagnetic Fields , 2005 .

[26]  Tzyy-Ping Jung,et al.  Analyzing and Visualizing Single-Trial Event-Related Potentials , 1998, NIPS.

[27]  C M Michel,et al.  EEG‐Triggered Functional MRI in Patients With Pharmacoresistant Epilepsy , 2000, Journal of magnetic resonance imaging : JMRI.

[28]  Per Christian ANALYSIS OF DISCRETE ILL-POSED PROBLEMS BY MEANS OF THE L-CURVE* , 1992 .

[29]  G. Bruce Pike,et al.  Hemodynamic and metabolic responses to neuronal inhibition , 2004, NeuroImage.

[30]  Karl J. Friston,et al.  Systematic Regularization of Linear Inverse Solutions of the EEG Source Localization Problem , 2002, NeuroImage.

[31]  A. Gevins,et al.  The future of the EEG and MEG. , 1993, Electroencephalography and clinical neurophysiology.

[32]  L. Kaufman,et al.  Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation , 1992, IEEE Transactions on Biomedical Engineering.

[33]  G. Nolte The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. , 2003, Physics in medicine and biology.

[34]  P. Skudlarski,et al.  Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: a parametric approach to combining fMRI and ERP. , 2002, Magnetic resonance imaging.

[35]  A. Dale,et al.  Coupling of Total Hemoglobin Concentration, Oxygenation, and Neural Activity in Rat Somatosensory Cortex , 2003, Neuron.

[36]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[37]  K. K. Tan,et al.  The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. , 1993, Electroencephalography and clinical neurophysiology.

[38]  C C Wood,et al.  Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. , 1995, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[39]  Tapio Seppänen,et al.  BOLD-contrast functional MRI signal changes related to intermittent rhythmic delta activity in EEG during voluntary hyperventilation—simultaneous EEG and fMRI study , 2004, NeuroImage.

[40]  Hellmuth Obrig,et al.  Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy , 2003, NeuroImage.

[41]  Satoru Miyauchi,et al.  Circulatory basis of fMRI signals: relationship between changes in the hemodynamic parameters and BOLD signal intensity , 2004, NeuroImage.

[42]  F. Kruggel,et al.  Hemodynamic and Electroencephalographic Responses to Illusory Figures: Recording of the Evoked Potentials during Functional MRI , 2001, NeuroImage.

[43]  D Gounot,et al.  Where arousal meets attention: a simultaneous fMRI and EEG recording study , 2004, NeuroImage.

[44]  Febo Cincotti,et al.  Linear inverse estimation of cortical sources by using high resolution EEG and fMRI priors , 2001 .

[45]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[46]  M. Murray,et al.  EEG source imaging , 2004, Clinical Neurophysiology.

[47]  Chantal Delon-Martin,et al.  Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis , 2004, NeuroImage.

[48]  Christopher Nimsky,et al.  Correlation of Sensorimotor Activation with Functional Magnetic Resonance Imaging and Magnetoencephalography in Presurgical Functional Imaging: A Spatial Analysis , 2001, NeuroImage.

[49]  G. W. Pruis,et al.  A comparison of different numerical methods for solving the forward problem in EEG and MEG. , 1993, Physiological measurement.

[50]  J. Malmivuo,et al.  Sensitivity distributions of EEG and MEG measurements , 1997, IEEE Transactions on Biomedical Engineering.

[51]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[52]  J. Rajapakse,et al.  Human Brain Mapping 6:283–300(1998) � Modeling Hemodynamic Response for Analysis of Functional MRI Time-Series , 2022 .

[53]  Jean-Baptiste Poline,et al.  Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment , 2003, IEEE Transactions on Medical Imaging.

[54]  C. Barillot,et al.  Registration of MEG/EEG data with 3D MRI: Methodology and precision issues , 1996, Brain Topography.

[55]  Mark S. Cohen,et al.  Acquiring simultaneous EEG and functional MRI , 2000, Clinical Neurophysiology.

[56]  M. Hämäläinen,et al.  Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data , 1989, IEEE Transactions on Biomedical Engineering.

[57]  Karl J. Friston,et al.  Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution , 2003, NeuroImage.

[58]  J R Ives,et al.  EEG-triggered echo-planar functional MRI in epilepsy , 1996, Neurology.

[59]  Seppo P. Ahlfors,et al.  Geometrical interpretation of fMRI-guided MEG/EEG inverse estimates , 2004, NeuroImage.

[60]  G. Berns Functional neuroimaging. , 1999, Life sciences.

[61]  Daniel C. Javitt,et al.  Right hemisphere control of visuospatial attention: line-bisection judgments evaluated with high-density electrical mapping and source analysis☆ , 2003, NeuroImage.

[62]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[63]  Nelson J. Trujillo-Barreto,et al.  Bayesian model averaging in EEG/MEG imaging , 2004, NeuroImage.

[64]  Olaf Hauk,et al.  Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data , 2004, NeuroImage.

[65]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[66]  J Sijbers,et al.  Automatic localization of EEG electrode markers within 3D MR data. , 2000, Magnetic resonance imaging.

[67]  R. Buxton,et al.  A Model for the Coupling between Cerebral Blood Flow and Oxygen Metabolism during Neural Stimulation , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[68]  L. Lemieux,et al.  Recording of EEG during fMRI experiments: Patient safety , 1997, Magnetic resonance in medicine.

[69]  Finn Årup Nielsen,et al.  Bibliography of Segmentation in Neuroimaging , 2005 .

[70]  A. Kleinschmidt,et al.  Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Sylvain Baillet,et al.  A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem , 1997, IEEE Transactions on Biomedical Engineering.

[72]  Gareth R. Barnes,et al.  The use of anatomical constraints with MEG beamformers , 2003, NeuroImage.

[73]  J. Hogg Magnetic resonance imaging. , 1994, Journal of the Royal Naval Medical Service.

[74]  コーヘン, マーク エス. Method and apparatus for reducing contamination of the electrical signal , 2001 .

[75]  A. Dale,et al.  Conductivity tensor mapping of the human brain using diffusion tensor MRI , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[77]  Jean-Baptiste Poline,et al.  Fusion of simultaneous fMRI/EEG data based on the electro-metabolic coupling , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[78]  Carsten H. Wolters,et al.  Influence of head tissue conductivity anisotropy on human EEG and MEG using fast high resolution finite element modeling, based on a parallel algebraic multigrid solver , 2001 .

[79]  Z. Zhang,et al.  A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres. , 1995, Physics in medicine and biology.

[80]  O. Blanke,et al.  The use of functional constraints for the neuroelectromagnetic inverse problem: alternatives and caveats. , 2001 .

[81]  Manbir Singh,et al.  An Evaluation of Methods for Neuromagnetic Image Reconstruction , 1987, IEEE Transactions on Biomedical Engineering.

[82]  K. D. Singh,et al.  Co-registration of magnetoencephalography with magnetic resonance imaging using bite-bar-based fiducials and surface-matching , 2004, Clinical Neurophysiology.

[83]  J J Riera,et al.  Evaluation of inverse methods and head models for EEG source localization using a human skull phantom , 2001, Physics in medicine and biology.

[84]  M Seeck,et al.  EEG-Linked functional magnetic resonance imaging in epilepsy and cognitive neurophysiology. , 2000, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[85]  Barak A. Pearlmutter,et al.  Independent components of magnetoencephalography: Localization and single-trial response onset detection , 2002 .

[86]  F. Poupon "Parcellisation" systématique du cerveau en volumes d'intérêt : Le cas des structures profondes , 1999 .

[87]  Wilkin Chau,et al.  An integrative MEG–fMRI study of the primary somatosensory cortex using cross-modal correspondence analysis , 2004, NeuroImage.

[88]  G J Barker,et al.  Multimodal MR Imaging: Functional, Diffusion Tensor, and Chemical Shift Imaging in a Patient with Localization‐Related Epilepsy , 1999, Epilepsia.

[89]  Masato Yumoto,et al.  Stepping stone sampling for retrieving artifact-free electroencephalogram during functional magnetic resonance imaging , 2003, NeuroImage.

[90]  Michiro Negishi,et al.  Removal of time-varying gradient artifacts from EEG data acquired during continuous fMRI , 2004, Clinical Neurophysiology.

[91]  Deborah A. Vitacco,et al.  Correspondence of event‐related potential tomography and functional magnetic resonance imaging during language processing , 2002, Human brain mapping.

[92]  M R Symms,et al.  Spatio-temporal imaging of focal interictal epileptiform activity using EEG-triggered functional MRI. , 2001, Epileptic disorders : international epilepsy journal with videotape.

[93]  Barak A. Pearlmutter,et al.  An MEG Study of Response Latency and Variability in the Human Visual System During a Visual-Motor Integration Task , 1999, NIPS.

[94]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[95]  M Seeck,et al.  Functional MRI with simultaneous EEG recording: Feasibility and application to motor and visual activation , 2001, Journal of magnetic resonance imaging : JMRI.

[96]  Kyung K Peck,et al.  Comparison of hemodynamic response nonlinearity across primary cortical areas , 2004, NeuroImage.

[97]  Rob S. MacLeod,et al.  Inverse electrocardiography by simultaneous imposition of multiple constraints , 1999, IEEE Transactions on Biomedical Engineering.

[98]  Mark S. Cohen,et al.  Parametric Analysis of fMRI Data Using Linear Systems Methods , 1997, NeuroImage.

[99]  D. Lehmann,et al.  Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[100]  J Sijbers,et al.  Restoration of MR-induced artifacts in simultaneously recorded MR/EEG data. , 1999, Magnetic resonance imaging.

[101]  K D Singh,et al.  Evaluation of MRI-MEG/EEG co-registration strategies using Monte Carlo simulation. , 1997, Electroencephalography and clinical neurophysiology.

[102]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[103]  M. Fuchs,et al.  Linear and nonlinear current density reconstructions. , 1999, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[104]  Barak A. Pearlmutter,et al.  Fast robust subject‐independent magnetoencephalographic source localization using an artificial neural network , 2005, Human brain mapping.

[105]  Jeffrey R. Binder,et al.  Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm , 2003, NeuroImage.

[106]  Marnie E. Shaw,et al.  How reliable are fMRI–EEG studies of epilepsy? A nonparametric approach to analysis validation and optimization , 2005, NeuroImage.

[107]  Manbir Singh,et al.  Correlation between BOLD‐fMRI and EEG signal changes in response to visual stimulus frequency in humans , 2003, Magnetic resonance in medicine.

[108]  Yoshio Okada,et al.  Comparison of MEG and EEG on the basis of somatic evoked responses elicited by stimulation of the snout in the juvenile swine , 1999, Clinical Neurophysiology.

[109]  O. Arthurs,et al.  How well do we understand the neural origins of the fMRI BOLD signal? , 2002, Trends in Neurosciences.

[110]  C S Henriquez,et al.  Finite element analysis of bioelectric phenomena. , 1990, Critical reviews in biomedical engineering.

[111]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[112]  D. Attwell,et al.  The neural basis of functional brain imaging signals , 2002, Trends in Neurosciences.

[113]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[114]  Erkki Oja,et al.  Independent component approach to the analysis of EEG and MEG recordings , 2000, IEEE Transactions on Biomedical Engineering.

[115]  Andreas Kleinschmidt,et al.  EEG-correlated fMRI of human alpha activity , 2003, NeuroImage.

[116]  Fumikazu Miwakeichi,et al.  Concurrent EEG/fMRI analysis by multiway Partial Least Squares , 2004, NeuroImage.

[117]  C. Windischberger,et al.  Co-Registration of EEG and MRI Data Using Matching of Spline Interpolated and MRI-Segmented Reconstructions of the Scalp Surface , 2004, Brain Topography.

[118]  P. Nunez,et al.  On the Relationship of Synaptic Activity to Macroscopic Measurements: Does Co-Registration of EEG with fMRI Make Sense? , 2004, Brain Topography.

[119]  Louis Lemieux,et al.  Comparison of Spike-Triggered Functional MRI BOLD Activation and EEG Dipole Model Localization , 2001, NeuroImage.

[120]  J. Belliveau,et al.  Metallic electrodes and leads in simultaneous EEG‐MRI: Specific absorption rate (SAR) simulation studies , 2004, Bioelectromagnetics.

[121]  E. Moser,et al.  Magnetoencephalography May Help to Improve Functional MRI Brain Mapping , 1997, The European journal of neuroscience.

[122]  Emery N. Brown,et al.  Motion and Ballistocardiogram Artifact Removal for Interleaved Recording of EEG and EPs during MRI , 2002, NeuroImage.

[123]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[124]  Y. Okada,et al.  Contribution of Ionic Currents to Magnetoencephalography (MEG) and Electroencephalography (EEG) Signals Generated by Guinea‐Pig CA3 Slices , 2003, The Journal of physiology.

[125]  L. Geddes,et al.  The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist , 1967, Medical and biological engineering.

[126]  L Bozzao,et al.  Real-time MR artifacts filtering during continuous EEG/fMRI acquisition. , 2003, Magnetic resonance imaging.

[127]  C. Jack,et al.  Determination of 10-20 system electrode locations using magnetic resonance image scanning with markers. , 1993, Electroencephalography and clinical neurophysiology.

[128]  G. Backus,et al.  The Resolving Power of Gross Earth Data , 1968 .

[129]  F. Carducci,et al.  Automatic alignment of EEG/MEG and MRI data sets , 2001, Clinical Neurophysiology.

[130]  Mark S. Cohen,et al.  Simultaneous EEG and fMRI of the alpha rhythm , 2002, Neuroreport.

[131]  Adrian L. Williams,et al.  Task-Related Changes in Cortical Synchronization Are Spatially Coincident with the Hemodynamic Response , 2002, NeuroImage.

[132]  Martin J. McKeown,et al.  Removing electroencephalographic artifacts: comparison between ICA and PCA , 1998, Neural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No.98TH8378).

[133]  Karl J. Friston,et al.  Studying spontaneous EEG activity with fMRI , 2003, Brain Research Reviews.

[134]  Christoph M. Michel,et al.  Electrical neuroimaging based on biophysical constraints , 2004, NeuroImage.

[135]  J. R. Baker,et al.  Simultaneous functional magnetic resonance imaging and electrophysiological recording , 1995 .

[136]  D. M. Schmidt,et al.  Bayesian inference applied to the electromagnetic inverse problem , 1998, Human brain mapping.

[137]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using orthonormal matrices , 1988 .

[138]  C H Lücking,et al.  Estimation of the accuracy of a surface matching technique for registration of EEG and MRI data. , 1998, Electroencephalography and clinical neurophysiology.

[139]  Karl J. Friston,et al.  Anatomically Informed Basis Functions for EEG Source Localization: Combining Functional and Anatomical Constraints , 2002, NeuroImage.

[140]  O. Josephs,et al.  EEG recording during fMRI experiments: Image quality , 2000, Human brain mapping.

[141]  Eric Halgren,et al.  Magnetoencephalography ( Neuromagnetism ) , 2003 .

[142]  Robert Turner,et al.  A Method for Removing Imaging Artifact from Continuous EEG Recorded during Functional MRI , 2000, NeuroImage.

[143]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[144]  Sylvain Baillet,et al.  Influence of skull anisotropy for the forward and inverse problem in EEG: Simulation studies using FEM on realistic head models , 1998, Human brain mapping.

[145]  S. Gonzalez-Andino,et al.  A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem , 1998, IEEE Transactions on Biomedical Engineering.

[146]  C M Michel,et al.  Localization of distributed sources and comparison with functional MRI. , 2002, Epileptic disorders : international epilepsy journal with videotape.

[147]  Nelson J. Trujillo-Barreto,et al.  A symmetrical Bayesian model for fMRI and EEG/MEG neuroimage fusion , 2001 .

[148]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[149]  Srikantan S. Nagarajan,et al.  Reconstructing MEG Sources with Unknown Correlations , 2003, NIPS.

[150]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[151]  Robert Schmitt,et al.  Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection , 2004, NeuroImage.

[152]  J. Xiong,et al.  Directly mapping magnetic field effects of neuronal activity by magnetic resonance imaging , 2003, Human brain mapping.

[153]  L. Garnero,et al.  Combined MEG and EEG source imaging by minimization of mutual information , 1999, IEEE Transactions on Biomedical Engineering.

[154]  M R Symms,et al.  EEG-triggered functional MRI of interictal epileptiform activity in patients with partial seizures. , 1999, Brain : a journal of neurology.

[155]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[156]  Richard M. Leahy,et al.  BrainSuite: An Automated Cortical Surface Identification Tool , 2000, MICCAI.

[157]  T. Sejnowski,et al.  Removing electroencephalographic artifacts by blind source separation. , 2000, Psychophysiology.

[158]  Mark S. Cohen,et al.  Simultaneous EEG and fMRI made easy , 2001, NeuroImage.

[159]  Bruno Rossion,et al.  Parametric design and correlational analyses help integrating fMRI and electrophysiological data during face processing , 2004, NeuroImage.

[160]  Afraim Salek-Haddadi,et al.  Simultaneous EEG-Correlated Ictal fMRI , 2002, NeuroImage.

[161]  D. Cohen Magnetoencephalography: Detection of the Brain's Electrical Activity with a Superconducting Magnetometer , 1972, Science.

[162]  J. Lewin Functional MRI: An introduction to methods , 2003 .

[163]  H. J. Wieringa,et al.  The estimation of a realistic localization of dipole layers within the brain based on functional (EEG, MEG) and structural (MRI) data: A preliminary note , 2005, Brain Topography.

[164]  S Makeig,et al.  Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.