The CMB angular power spectrum via component separation: a study on Planck data

Aims. We investigate the extent to which foreground-cleaned cosmic microwave background (CMB) maps can be used to estimate cosmological parameters at small scales. Methods. We use the SMICA method, a blind separation technique that works directly at the spectral level. In this work we focus on the small scales of the CMB angular power spectrum, which are chiefly affected by noise and extragalactic foregrounds, such as point sources. We adapt SMICA to use only cross-spectra between data maps, thus avoiding the noise bias. In this study, performed using both simulations and Planck 2015 data, we fit for extragalactic point sources by modelling them as shot noise of two independent populations. Results. In simulations, we correctly recover the point-source emission law, and obtain a CMB angular power spectrum that has an average foreground residual of one fifth of the CMB power at ℓ ≥ 2200. With Planck data, the recovered point-source emission law corresponds to external estimates, with some offsets at the highest and lowest frequencies, possibly due to frequency decoherence of point sources. The CMB angular power spectrum residuals are consistent with what we find in simulations. The cosmological parameters obtained from the simulations and the data show offsets up to 1σ on average from their expected values. Biases on cosmological parameters in simulations represent the expected level of bias in Planck data. Conclusions. The results on cosmological parameters depend on the detail of the foreground residual contamination in the spectrum, and therefore a tailored modelling of the likelihood foreground model is required.

[1]  A. Challinor,et al.  Measurement of CIB power spectra over large sky areas from Planck HFI maps , 2016, 1609.08942.

[2]  Jacques Delabrouille,et al.  A needlet ILC analysis of WMAP 9-year polarization data: CMB polarization power spectra , 2012, 1204.0292.

[3]  Jacques Delabrouille,et al.  A needlet internal linear combination analysis of WMAP 7-year data: estimation of CMB temperature map and power spectrum , 2011, 1106.5383.

[4]  Max Tegmark,et al.  A method for subtracting foregrounds from multifrequency CMB sky maps , 1996 .

[5]  H. Peiris,et al.  SILC: a new Planck internal linear combination CMB temperature map using directional wavelets , 2016, 1601.01322.

[6]  O. Zahn,et al.  MODELING EXTRAGALACTIC FOREGROUNDS AND SECONDARIES FOR UNBIASED ESTIMATION OF COSMOLOGICAL PARAMETERS FROM PRIMARY COSMIC MICROWAVE BACKGROUND ANISOTROPY , 2011, 1102.5195.

[7]  G. W. Pratt,et al.  Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.

[8]  C. A. Oxborrow,et al.  Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds , 2015, 1506.06660.

[9]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[10]  K. Ichiki,et al.  CMB foreground: A concise review , 2014 .

[11]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[12]  C. A. Oxborrow,et al.  Planck 2015 results. IX. Diffuse component separation: CMB maps , 2015, 1502.05956.

[13]  E. Hivon,et al.  Fast estimation of polarization power spectra using correlation functions , 2003, astro-ph/0303414.

[14]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.

[15]  C. A. Oxborrow,et al.  Planck 2015 results. XV. Gravitational lensing , 2015, 1502.01591.

[16]  J. Cardoso,et al.  Semi-blind Bayesian inference of CMB map and power spectrum , 2014, 1409.0858.

[17]  C. A. Oxborrow,et al.  Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation , 2013, 1309.0382.

[18]  Jean-Francois Cardoso,et al.  Foreground component separation with generalised ILC , 2011, 1103.1166.

[19]  N. Aghanim,et al.  A multifrequency approach of the cosmological parameter estimation in the presence of extragalactic point sources , 2011, 1112.3260.

[20]  Point-source power in 3 year Wilkinson Microwave Anisotropy Probe data , 2006, astro-ph/0606538.

[21]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[22]  Jean-François Cardoso,et al.  Component Separation With Flexible Models—Application to Multichannel Astrophysical Observations , 2008, IEEE Journal of Selected Topics in Signal Processing.

[23]  G. W. Pratt,et al.  Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.

[24]  T. Souradeep,et al.  Improved Diffuse Foreground Subtraction with the ILC Method: CMB Map and Angular Power Spectrum Using Planck and WMAP Observations , 2016, 1612.03401.

[25]  H. K. Eriksen,et al.  Power Spectrum Estimation from High-Resolution Maps by Gibbs Sampling , 2004 .

[26]  J. Cardoso,et al.  CMB and foregrounds in WMAP first year data , 2004, astro-ph/0410280.

[27]  Rémi Gribonval,et al.  Latent variable analysis and signal separation , 2012, Signal Process..

[28]  J.-L. Starck,et al.  Sparse component separation for accurate cosmic microwave background estimation , 2012, 1206.1773.

[29]  G. Zotti,et al.  All-sky astrophysical component separation with Fast Independent Component Analysis (FastICA) , 2001, astro-ph/0108362.

[30]  J. Aumont,et al.  Planck intermediate results. XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies , 2016, 1605.09387.

[31]  J. Cardoso,et al.  A full sky, low foreground, high resolution CMB map from WMAP , 2008, 0807.0773.

[32]  J. Cardoso,et al.  Multidetector multicomponent spectral matching and applications for cosmic microwave background data analysis , 2002, astro-ph/0211504.

[33]  N. Aghanim,et al.  Characterization of the non-Gaussianity of radio and IR point sources at CMB frequencies , 2011, 1107.2251.

[34]  C. Baccigalupi,et al.  Estimating the spectral indices of correlated astrophysical foregrounds by a second-order statistical approach , 2006, astro-ph/0609701.

[35]  J. Cardoso,et al.  Cosmic microwave background and foregrounds in Wilkinson Microwave Anisotropy Probe first-year data , 2005 .

[36]  J. Fadili,et al.  SZ and CMB reconstruction using generalized morphological component analysis , 2007, 0712.0588.

[37]  P. A. R. Ade,et al.  ANGULAR POWER SPECTRA OF THE MILLIMETER-WAVELENGTH BACKGROUND LIGHT FROM DUSTY STAR-FORMING GALAXIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4315.

[38]  C. A. Oxborrow,et al.  Planck2013 results. XII. Diffuse component separation , 2013, Astronomy & Astrophysics.

[39]  P. Vielva,et al.  Multiresolution internal template cleaning: an application to the Wilkinson Microwave Anisotropy Probe 7-yr polarization data , 2011, 1106.2016.

[40]  G. W. Pratt,et al.  Planck 2015 results. XVII. Constraints on primordial non-Gaussianity , 2015, 1502.01592.

[41]  G. W. Pratt,et al.  Planck 2015 results - X. Diffuse component separation: Foreground maps , 2015, 1502.01588.

[42]  H. K. Eriksen,et al.  Joint Bayesian Component Separation and CMB Power Spectrum Estimation , 2007, 0709.1058.