### A New Kind of Science

暂无分享，去创建一个

[1] John Cocke,et al. Universality of Tag Systems with P = 2 , 1964, JACM.

[2] R. Feynman. The Character of Physical Law , 1965 .

[3] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[4] Leonid A. Levin,et al. Average Case Complete Problems , 1986, SIAM J. Comput..

[5] Heiner Marxen,et al. Attacking the Busy Beaver 5 , 1990, Bull. EATCS.

[6] A. Shimony,et al. Bell’s theorem without inequalities , 1990 .

[7] John Watrous,et al. On one-dimensional quantum cellular automata , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[8] David G. Mitchell,et al. Finding hard instances of the satisfiability problem: A survey , 1996, Satisfiability Problem: Theory and Applications.

[9] Cynthia Dwork,et al. A public-key cryptosystem with worst-case/average-case equivalence , 1997, STOC '97.

[10] L. Smolin,et al. Causal evolution of spin networks , 1997 .

[11] Umesh V. Vazirani,et al. Quantum Complexity Theory , 1997, SIAM J. Comput..

[12] T. Nowotny,et al. Dimension theory of graphs and networks , 1997, hep-th/9707082.

[13] Leonid A. Levin,et al. A Pseudorandom Generator from any One-way Function , 1999, SIAM J. Comput..

[14] G. Hooft. Quantum gravity as a dissipative deterministic system , 1999, gr-qc/9903084.

[15] R. Sorkin,et al. Classical sequential growth dynamics for causal sets , 1999, gr-qc/9904062.

[16] L. Crane. A New Approach to the Geometrization of Matter , 2001, gr-qc/0110060.

[17] Christopher Umans. The Minimum Equivalent DNF Problem and Shortest Implicants , 2001, J. Comput. Syst. Sci..

[18] N. Gisin,et al. Quantum correlations with spacelike separated beam splitters in motion: experimental test of multisimultaneity. , 2002, Physical review letters.

[19] R. Bousso. The Holographic principle , 2002, hep-th/0203101.

[20] James Park. A New Kind of Science , 2002, The Yale Journal of Biology and Medicine.

[21] Yaoyun Shi. Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..