Modeling sleep and wakefulness in the thalamocortical system.

When the brain goes from wakefulness to sleep, cortical neurons begin to undergo slow oscillations in their membrane potential that are synchronized by thalamocortical circuits and reflected in EEG slow waves. To provide a self-consistent account of the transition from wakefulness to sleep and of the generation of sleep slow waves, we have constructed a large-scale computer model that encompasses portions of two visual areas and associated thalamic and reticular thalamic nuclei. Thousands of model neurons, incorporating several intrinsic currents, are interconnected with millions of thalamocortical, corticothalamic, and both intra- and interareal corticocortical connections. In the waking mode, the model exhibits irregular spontaneous firing and selective responses to visual stimuli. In the sleep mode, neuromodulatory changes lead to slow oscillations that closely resemble those observed in vivo and in vitro. A systematic exploration of the effects of intrinsic currents and network parameters on the initiation, maintenance, and termination of slow oscillations shows the following. 1) An increase in potassium leak conductances is sufficient to trigger the transition from wakefulness to sleep. 2) The activation of persistent sodium currents is sufficient to initiate the up-state of the slow oscillation. 3) A combination of intrinsic and synaptic currents is sufficient to maintain the up-state. 4) Depolarization-activated potassium currents and synaptic depression terminate the up-state. 5) Corticocortical connections synchronize the slow oscillation. The model is the first to integrate intrinsic neuronal properties with detailed thalamocortical anatomy and reproduce neural activity patterns in both wakefulness and sleep, thereby providing a powerful tool to investigate the role of sleep in information transmission and plasticity.

[1]  B. Connors,et al.  Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  K. Martin,et al.  Termination of the geniculocortical projection in the striate cortex of macaque monkey: A quantitative immunoelectron microscopic study , 2000, The Journal of comparative neurology.

[3]  G. Avanzini,et al.  Ionic mechanisms underlying burst firing in pyramidal neurons: intracellular study in rat sensorimotor cortex , 1995, Brain Research.

[4]  B. Cleland,et al.  Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. , 1977, Journal of neurophysiology.

[5]  P. Rakic A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution , 1995, Trends in Neurosciences.

[6]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[7]  A. Leventhal Evidence that the different classes of relay cells of the cat's lateral geniculate nucleus terminate in different layers of the striate cortex , 1979, Experimental Brain Research.

[8]  M. Steriade The corticothalamic system in sleep. , 2003, Frontiers in bioscience : a journal and virtual library.

[9]  C. Koch,et al.  A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  D. Paré,et al.  Calcium electrogenesis in neocortical pyramidal neurons in vivo , 1998, The European journal of neuroscience.

[11]  B. Connors,et al.  Electrophysiological properties of neocortical neurons in vitro. , 1982, Journal of neurophysiology.

[12]  N. Lambert,et al.  Membrane properties of identified lateral and medial perforant pathway projection neurons , 2003, Neuroscience.

[13]  S. Zeki,et al.  Modular Connections between Areas V2 and V4 of Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[14]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[15]  D Contreras,et al.  Mechanisms of long‐lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. , 1996, The Journal of physiology.

[16]  D. McCormick,et al.  Sleep and arousal: thalamocortical mechanisms. , 1997, Annual review of neuroscience.

[17]  K. Rockland,et al.  Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey. , 1994, Cerebral cortex.

[18]  J. Robson The morphology of corticofugal axons to the dorsal lateral geniculate nucleus in the cat , 1983, The Journal of comparative neurology.

[19]  T. J. Sejnowski,et al.  Self–sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABAA receptor potentials , 1999, Nature Neuroscience.

[20]  B R Payne,et al.  Evidence for visual cortical area homologs in cat and macaque monkey. , 1993, Cerebral cortex.

[21]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. , 2003, Journal of neurophysiology.

[22]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[23]  D. S. JONES,et al.  Simulation and Analysis , 1968, Nature.

[24]  T. Mittmann,et al.  Muscarinic inhibition of persistent Na+ current in rat neocortical pyramidal neurons. , 1998, Journal of neurophysiology.

[25]  C D Woody,et al.  Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. , 1993, Journal of neurophysiology.

[26]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[27]  E. White Cortical Circuits: Synaptic Organization of the Cerebral Cortex , 1989 .

[28]  T. Sejnowski,et al.  Origin of slow cortical oscillations in deafferented cortical slabs. , 2000, Cerebral cortex.

[29]  C. Gray,et al.  Cellular Mechanisms Contributing to Response Variability of Cortical Neurons In Vivo , 1999, The Journal of Neuroscience.

[30]  A. Peters,et al.  The organization of double bouquet cells in monkey striate cortex , 1997, Journal of neurocytology.

[31]  D. McCormick,et al.  The Functional Influence of Burst and Tonic Firing Mode on Synaptic Interactions in the Thalamus , 1998, The Journal of Neuroscience.

[32]  D. McCormick,et al.  Ionic Mechanisms Underlying Repetitive High-Frequency Burst Firing in Supragranular Cortical Neurons , 2000, The Journal of Neuroscience.

[33]  K. Rockland,et al.  Feedback connections from area MT of the squirrel monkey to areas V1 and V2 , 2000, The Journal of comparative neurology.

[34]  T. Sejnowski,et al.  Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. , 1996, Journal of neurophysiology.

[35]  P. Schwindt,et al.  Repetitive firing in layer V neurons from cat neocortex in vitro. , 1984, Journal of neurophysiology.

[36]  E. Callaway,et al.  Contributions of individual layer 6 pyramidal neurons to local circuitry in macaque primary visual cortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  K. Rockland,et al.  Divergent feedback connections from areas V4 and TEO in the macaque , 1994, Visual Neuroscience.

[38]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[39]  T. Sejnowski,et al.  Thalamocortical Assemblies: How Ion Channels, Single Neurons and Large-Scale Networks Organize Sleep Oscillations , 2001 .

[40]  Fiona E. N. LeBeau,et al.  GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Steriade,et al.  Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation. , 1995, Journal of neurophysiology.

[42]  M. Cynader,et al.  Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). , 1992, Cerebral cortex.

[43]  Robert Stickgold,et al.  Gamma EEG dynamics in neocortex and hippocampus during human wakefulness and sleep , 2004, NeuroImage.

[44]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[45]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  M. Vargas-Caballero,et al.  A slow fraction of Mg2+ unblock of NMDA receptors limits their contribution to spike generation in cortical pyramidal neurons. , 2003, Journal of neurophysiology.

[47]  A. Grinvald,et al.  Spatiotemporal Dynamics of Sensory Responses in Layer 2/3 of Rat Barrel Cortex Measured In Vivo by Voltage-Sensitive Dye Imaging Combined with Whole-Cell Voltage Recordings and Neuron Reconstructions , 2003, The Journal of Neuroscience.

[48]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[49]  Maria V. Sanchez-Vives,et al.  Functional dynamics of GABAergic inhibition in the thalamus. , 1997, Science.

[50]  M. Deschenes,et al.  Voltage-dependent 40-Hz * oscillations in rat reticular thalamic neurons in vivo , 1992, Neuroscience.

[51]  B. Sakmann,et al.  Fast and slow components of unitary EPSCs on stellate cells elicited by focal stimulation in slices of rat visual cortex. , 1992, The Journal of physiology.

[52]  U. Eysel,et al.  Functional and Structural Topography of Horizontal Inhibitory Connections in Cat Visual Cortex , 1993, The European journal of neuroscience.

[53]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[54]  D. McCormick Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity , 1992, Progress in Neurobiology.

[55]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[56]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[57]  W. Singer,et al.  Topographic organization of the orientation column system in large flat‐mounts of the cat visual cortex: A 2‐deoxyglucose study , 1987, The Journal of comparative neurology.

[58]  J. Barker,et al.  Presynaptic quantal plasticity: Katz's original hypothesis revisited , 2003, Synapse.

[59]  S. Hestrin,et al.  Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex , 1998, Nature Neuroscience.

[60]  G. Edelman,et al.  Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms. , 1997, Cerebral cortex.

[61]  U. Eysel,et al.  Cellular organization of reciprocal patchy networks in layer III of cat visual cortex (area 17) , 1992, Neuroscience.

[62]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[63]  D. McCormick,et al.  Turning on and off recurrent balanced cortical activity , 2003, Nature.

[64]  E. G. Jones,et al.  GABAergic neurons and their role in cortical plasticity in primates. , 1993, Cerebral cortex.

[65]  E. Callaway,et al.  Contributions of individual layer 2–5 spiny neurons to local circuits in macaque primary visual cortex , 1996, Visual Neuroscience.

[66]  P W Gage,et al.  A voltage-dependent persistent sodium current in mammalian hippocampal neurons , 1990, The Journal of general physiology.

[67]  K. Rockland,et al.  Laminar distribution of neurons projecting from area V1 to V2 in macaque and squirrel monkeys. , 1992, Cerebral cortex.

[68]  E. G. Jones,et al.  Differences in quantal amplitude reflect GluR4- subunit number at corticothalamic synapses on two populations of thalamic neurons , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[69]  F. Amzica In vivo electrophysiological evidences for cortical neuron–glia interactions during slow (<1 Hz) and paroxysmal sleep oscillations , 2002, Journal of Physiology-Paris.

[70]  G. Henry,et al.  Physiological studies on the feedback connection to the striate cortex from cortical areas 18 and 19 of the cat , 1988, Experimental Brain Research.

[71]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[72]  S. Siegelbaum,et al.  Hyperpolarization-activated cation currents: from molecules to physiological function. , 2003, Annual review of physiology.

[73]  E. Jones,et al.  Thalamic organization and function after Cajal. , 2002, Progress in brain research.

[74]  J. Leo van Hemmen,et al.  Development of spatiotemporal receptive fields of simple cells: II. Simulation and analysis , 1997, Biological Cybernetics.

[75]  V. Montero,et al.  A quantitative study of synaptic contacts on interneurons and relay cells of the cat lateral geniculate nucleus , 2004, Experimental Brain Research.

[76]  G. Edelman,et al.  Neural dynamics in a model of the thalamocortical system. II. The role of neural synchrony tested through perturbations of spike timing. , 1997, Cerebral cortex.

[77]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[78]  K. Stratford,et al.  Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  C. Gray,et al.  Visually evoked oscillations of membrane potential in cells of cat visual cortex. , 1992, Science.

[81]  D. McCormick,et al.  Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. , 1992, Journal of neurophysiology.

[82]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[83]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[84]  T J Sejnowski,et al.  In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  T J Sejnowski,et al.  Cellular and network models for intrathalamic augmenting responses during 10-Hz stimulation. , 1998, Journal of neurophysiology.

[86]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[87]  Michael Rudolph,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[88]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[89]  R. Guillery,et al.  Exploring the Thalamus , 2000 .

[90]  C. Gilbert,et al.  Synaptic physiology of horizontal connections in the cat's visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[91]  N. Daw,et al.  The location and function of NMDA receptors in cat and kitten visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  M Steriade,et al.  Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  M. Steriade,et al.  Cellular substrates and laminar profile of sleep K-complex , 1997, Neuroscience.

[94]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[95]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[96]  G. Henry,et al.  Neural path taken by afferent streams in striate cortex of the cat. , 1979, Journal of neurophysiology.

[97]  A. Grinvald,et al.  Spontaneously emerging cortical representations of visual attributes , 2003, Nature.

[98]  H. Dinse,et al.  The timing of processing along the visual pathway in the cat. , 1994, Neuroreport.

[99]  J. Alonso,et al.  Functional connectivity between simple cells and complex cells in cat striate cortex , 1998, Nature Neuroscience.

[100]  I. Módy,et al.  Differential activation of GABAA and GABAB receptors by spontaneously released transmitter. , 1992, Journal of neurophysiology.

[101]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[102]  R. Yuste,et al.  Dynamics of Spontaneous Activity in Neocortical Slices , 2001, Neuron.

[103]  D Fitzpatrick,et al.  Cortical imaging: Capturing the moment , 2000, Current Biology.

[104]  D. Prince,et al.  A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[106]  R Llinás,et al.  Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells. , 1998, Journal of neurophysiology.

[107]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[108]  Y. Kang,et al.  Spatiotemporally differential inhibition of pyramidal cells in the cat motor cortex. , 1994, Journal of neurophysiology.

[109]  G. Tononi,et al.  Sleep and synaptic homeostasis: a hypothesis , 2003, Brain Research Bulletin.

[110]  B. Connors,et al.  Differential Regulation of Neocortical Synapses by Neuromodulators and Activity , 1997, Neuron.

[111]  P. Achermann,et al.  Low-frequency (<1Hz) oscillations in the human sleep electroencephalogram , 1997, Neuroscience.

[112]  M. Steriade Corticothalamic resonance, states of vigilance and mentation , 2000, Neuroscience.

[113]  T. Sejnowski,et al.  Model of Thalamocortical Slow-Wave Sleep Oscillations and Transitions to Activated States , 2002, The Journal of Neuroscience.

[114]  R. Shapley,et al.  A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Calpha. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[115]  U. Heberlein,et al.  Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila , 2000, Current Biology.

[116]  E. Callaway,et al.  Ocular dominance columns and local projections of layer 6 pyramidal neurons in macaque primary visual cortex , 1997, Visual Neuroscience.

[117]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[118]  M. Colonnier,et al.  A laminar analysis of the number of round‐asymmetrical and flat‐symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat , 1985, The Journal of comparative neurology.

[119]  D. Whitteridge,et al.  Innervation of cat visual areas 17 and 18 by physiologically identified X‐ and Y‐ type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements , 1985, The Journal of comparative neurology.

[120]  Sean L. Hill,et al.  The Sleep Slow Oscillation as a Traveling Wave , 2004, The Journal of Neuroscience.

[121]  J. Kaas,et al.  The projections of the lateral geniculate nucleus of the squirrel monkey: Studies of the interlaminar zones and the S layers , 1983, The Journal of comparative neurology.

[122]  William H. Press,et al.  Numerical recipes in C , 2002 .

[123]  M. Colonnier,et al.  The number of neurons in the different laminae of the binocular and monocular regions of area 17 in the cat , 1983, The Journal of comparative neurology.

[124]  C D Gilbert,et al.  Circuitry, architecture, and functional dynamics of visual cortex. , 1993, Cerebral cortex.

[125]  J R Huguenard,et al.  Nucleus-Specific Chloride Homeostasis in Rat Thalamus , 1997, The Journal of Neuroscience.

[126]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[127]  D. Whitteridge,et al.  Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[128]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[129]  M Steriade,et al.  Spiking-bursting activity in the thalamic reticular nucleus initiates sequences of spindle oscillations in thalamic networks. , 2000, Journal of neurophysiology.

[130]  C. Gilbert,et al.  Laminar patterns of geniculocortical projection in the cat , 1976, Brain Research.

[131]  D. Snodderly,et al.  Organization of striate cortex of alert, trained monkeys (Macaca fascicularis): ongoing activity, stimulus selectivity, and widths of receptive field activating regions. , 1995, Journal of neurophysiology.

[132]  J. Kaas,et al.  Cortical integration of parallel pathways in the visual system of primates , 1989, Brain Research.

[133]  G. Rizzolatti,et al.  An analysis of the spontaneous activity of lateral geniculate neurons and of optic tract fibers in free moving cats. , 1970, Archives italiennes de biologie.

[134]  M. Steriade,et al.  Neuronal Plasticity in Thalamocortical Networks during Sleep and Waking Oscillations , 2003, Neuron.

[135]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[136]  A Grinvald,et al.  Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. , 1995, Journal of neurophysiology.

[137]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[138]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[139]  I. Módy,et al.  Characterization of synaptically elicited GABAB responses using patch‐clamp recordings in rat hippocampal slices. , 1993, The Journal of physiology.

[140]  R. Reid,et al.  Efficacy of Retinal Spikes in Driving Cortical Responses , 2003, The Journal of Neuroscience.

[141]  Paul Antoine Salin,et al.  Projections from Areas 18 and 19 to Cat Striate Cortex: Divergence and Laminar Specificity , 1991, The European journal of neuroscience.

[142]  M. Gutnick,et al.  Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea‐pig neocortical neurones in slices. , 1996, The Journal of physiology.

[143]  U. Eysel,et al.  Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. , 1997, Cerebral cortex.

[144]  G. Orban,et al.  Laminar distribution of NMDA receptors in cat and monkey visual cortex visualized by [3H]‐MK‐801 binding , 1993, The Journal of comparative neurology.

[145]  T. Bonhoeffer,et al.  Relationship Between Lateral Inhibitory Connections and the Topography of the Orientation Map in Cat Visual Cortex , 1994, The European journal of neuroscience.

[146]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[147]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[148]  D. McCormick,et al.  Neurotransmitter control of neocortical neuronal activity and excitability. , 1993, Cerebral cortex.

[149]  B. Connors,et al.  Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. , 1991, Science.

[150]  M Steriade,et al.  Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. , 1996, Journal of neurophysiology.

[151]  Pablo Fuentealba,et al.  Prolonged hyperpolarizing potentials precede spindle oscillations in the thalamic reticular nucleus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[152]  K. Rockland,et al.  Terminal arbors of individual “Feedback” axons projecting from area V2 to V1 in the macaque monkey: A study using immunohistochemistry of anterogradely transported Phaseolus vulgaris‐leucoagglutinin , 1989, The Journal of comparative neurology.

[153]  J. Leo van Hemmen,et al.  Development of spatiotemporal receptive fields of simple cells: I. Model formulation , 1997, Biological Cybernetics.