Random Boolean nets are systems of randomly connected binary units (or spins). Each spin σ i can take two possible values (σ i =0 or 1). It receives, at time t, K binary input signals coming from K connected spins and updates its state according to a deterministic Boolean function of the K inputs. We compare the time evolution of the overlaps between different configurations for the two following models: Kauffman's model, for which the connections and Boolean function of each spin are randomly chosen at time t=0 and remain unchanged at later times; the annealed model, for which these parameters are randomly reset at each time step. The numerical simulations for both models agree remarkably well with the theoretical predictions available for the second model Les reseaux booleens aleatoires sont constitues d'unites logiques binaires connectees aleatoirement. A chaque intervalle de temps t, chaque unite, ou spin, prend la valeur 0 ou 1 suivant une fonction booleenne de K signaux d'entree binaires provenant des K spins connectes. Nous comparons l'evolution au cours du temps des recouvrements entre des configurations initialement differentes pour les deux modeles suivants: dans le modele de Kauffman, les connexions et les fonctions booleennes des automates sont choisies une fois pour toutes a l'instant initial. Dans le modele recuit, ces parametres font l'objet d'un nouveau tirage aleatoire a chaque pas de temps. Les simulations numeriques effectuees pour les deux modeles sont dans un accord remarquable avec les predictions theoriques faites pour le second modele
[1]
S. Kauffman.
Metabolic stability and epigenesis in randomly constructed genetic nets.
,
1969,
Journal of theoretical biology.
[2]
S. Kauffman.
The large scale structure and dynamics of gene control circuits: an ensemble approach.
,
1974,
Journal of theoretical biology.
[3]
Françoise Fogelman-Soulié,et al.
Specific roles of the different Boolean mappings in random networks
,
1982
.
[4]
J J Hopfield,et al.
Neural networks and physical systems with emergent collective computational abilities.
,
1982,
Proceedings of the National Academy of Sciences of the United States of America.
[5]
S. Kauffman.
Emergent properties in random complex automata
,
1984
.
[6]
Françoise Fogelman-Soulié,et al.
Disordered Systems and Biological Organization
,
1986,
NATO ASI Series.
[7]
B. Derrida,et al.
Random networks of automata: a simple annealed approximation
,
1986
.