Image processing and behavior planning for intelligent vehicles

Since the potential of soft computing for driver assistance systems has been recognized, much effort has been spent in the development of appropriate techniques for robust lane detection, object classification, tracking, and representation of task relevant objects. For such systems in order to be able to perform their tasks the environment must be sensed by one or more sensors. Usually a complex processing, fusion, and interpretation of the sensor data is required and imposes a modular architecture for the overall system. In this paper, we present specific approaches considering the main components of such systems. We concentrate on image processing as the main source of relevant object information, representation and fusion of data that might arise from different sensors, and behavior planning and generation as a basis for autonomous driving. Within our system components most paradigms of soft computing are employed; in this article we focus on Kalman filtering for sensor fusion, neural field dynamics for behavior generation, and evolutionary algorithms for optimization of parts of the system.

[1]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  M. Bellanger Adaptive filter theory: by Simon Haykin, McMaster University, Hamilton, Ontario L8S 4LB, Canada, in: Prentice-Hall Information and System Sciences Series, published by Prentice-Hall, Englewood Cliffs, NJ 07632, U.S.A., 1986, xvii+590 pp., ISBN 0-13-004052-5 025 , 1987 .

[3]  Takeo Kanade,et al.  Vision and Navigation for the Carnegie-Mellon Navlab , 1987 .

[4]  Martial Hebert,et al.  Vision and navigation for the Carnegie-Mellon Navlab , 1988 .

[5]  James W. Modestino,et al.  A Markov Random Field Model-Based Approach To Image Interpretation , 1989, Other Conferences.

[6]  Charles E. Thorpe,et al.  Vision and Navigation , 1990 .

[7]  Simon Haykin,et al.  Adaptive filter theory (2nd ed.) , 1991 .

[8]  Ernst D. Dickmanns,et al.  Recursive 3-D Road and Relative Ego-State Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Dirk Dickmanns,et al.  Multiple object recognition and scene interpretation for autonomous road vehicle guidance , 1994, Proceedings of the Intelligent Vehicles '94 Symposium.

[11]  Alberto Broggi,et al.  A morphological model-driven approach to real-time road boundary detection for vision-based automotive systems , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[12]  F. Bottiger,et al.  Truck platooning in mixed traffic , 1995, Proceedings of the Intelligent Vehicles '95. Symposium.

[13]  Alberto Broggi,et al.  Vision-Based Road Detection in Automotive Systems: A Real-Time Expectation-Driven Approach , 1995, J. Artif. Intell. Res..

[14]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[15]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  Rahul Sukthankar,et al.  Situation Awareness for Tactical Driving , 1997 .

[17]  N. Hansen,et al.  Convergence Properties of Evolution Strategies with the Derandomized Covariance Matrix Adaptation: T , 1997 .

[18]  Trevor Darrell,et al.  A radial cumulative similarity transform for robust image correspondence , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[19]  Axel Steinhage,et al.  An Architecture for Behavioral Organization using Dynamical Systems , 1998 .

[20]  Shin Kato,et al.  A LATERAL CONTROL ALGORITHM FOR VISION-BASED VEHICLES WITH A MOVING TARGET IN THE FIELD , 1998 .

[21]  Massimo Bertozzi,et al.  GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection , 1998, IEEE Trans. Image Process..

[22]  C. Wöhler,et al.  A TIME-DELAY NEURAL NETWORK ALGORITHM FOR REAL-TIME PEDESTRIAN RECOGNITION , 1998 .

[23]  Martin Werner,et al.  Objektverfolgung und Objekterkennung mittels der partiellen Hausdorffdistanz , 1999 .

[24]  Gianni Conte,et al.  Automatic Vehicle Guidance: the Experience of the ARGO Autonomous Vehicle , 1999 .

[25]  Liang Zhao,et al.  Stereo- and neural network-based pedestrian detection , 1999, Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat. No.99TH8383).

[26]  Stan Sclaroff,et al.  Trajectory guided recognition of actions , 1999, Optics East.

[27]  Christos Tzomakas Contributions to the visual object detection and classification for driver assistance systems , 1999 .

[28]  W. von Seelen,et al.  A flexible architecture for intelligent cruise control , 1999, Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat. No.99TH8383).

[29]  E.D. Dickmanns,et al.  EMS-vision: recognition of intersections on unmarked road networks , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[30]  Thomas Kalinke,et al.  Walking pedestrian recognition , 2000, IEEE Trans. Intell. Transp. Syst..

[31]  T. Bucher Measurement of distance and height in images based on easy attainable calibration parameters , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[32]  E. D. Dickmanns,et al.  EMS-vision: gaze control in autonomous vehicles , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[33]  E. D. Dickmanns,et al.  EMS-Vision: mission performance on road networks , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[34]  Paul Levi,et al.  Advanced lane recognition-fusing vision and radar , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[35]  Massimo Bertozzi,et al.  Shape-based pedestrian detection , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[36]  L. Davis,et al.  Real-time multiple vehicle detection and tracking from a moving vehicle , 2000, Machine Vision and Applications.

[37]  Thomas Kalinke,et al.  An image processing system for driver assistance , 2000, Image Vis. Comput..

[38]  Liang Zhao,et al.  Recursive Context Reasoning for Human Detection and Parts Identification , 2000 .

[39]  Christian Igel,et al.  Optimization of dynamic neural fields , 2001, Neurocomputing.

[40]  Thomas Bergener,et al.  Parameter optimization for visual obstacle detection using a derandomized evolution strategy , 2001 .

[41]  Gesa Lorenz Ein farb- und kontextbasierter Ansatz zur Objekterkennung , 2001 .

[42]  Christian Igel,et al.  Optimization of Neural Field Models , 2001 .

[43]  Thomas Kalinke Texturbasierte dynamische Erkennung veränderlicher Objekte , 2001 .

[44]  Laurent Itti,et al.  Neuromorphic algorithms for computer vision and attention , 2001, SPIE Optics + Photonics.

[45]  W. von Seelen,et al.  Application and optimization of neural field dynamics for driver assistance , 2001, ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585).

[46]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[47]  G. Lorenz Using topological constraints as context for the joint classification of image regions in a traffic environment , 2001, ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585).

[48]  Tieniu Tan,et al.  Model-Based Localisation and Recognition of Road Vehicles , 1998, International Journal of Computer Vision.

[49]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.