COSMOLOGICAL CONSTRAINTS FROM SUNYAEV–ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178 deg2 OF THE SOUTH POLE TELESCOPE SURVEY

We use measurements from the South Pole Telescope (SPT) Sunyaev-Zel'dovich (SZ) cluster survey in combination with X-ray measurements to constrain cosmological parameters. We present a statistical method that fits for the scaling relations of the SZ and X-ray cluster observables with mass while jointly fitting for cosmology. The method is generalizable to multiple cluster observables, and self-consistently accounts for the effects of the cluster selection and uncertainties in cluster mass calibration on the derived cosmological constraints. We apply this method to a data set consisting of an SZ-selected catalog of 18 galaxy clusters at z > 0.3 from the first 178 deg^2 of the 2500 deg^2 SPT-SZ survey, with 14 clusters having X-ray observations from either Chandra or XMM-Newton. Assuming a spatially flat ΛCDM cosmological model, we find the SPT cluster sample constrains σ_8(Ω_m /0.25)^(0.30) = 0.785 ± 0.037. In combination with measurements of the cosmic microwave background (CMB) power spectrum from the SPT and the seven-year Wilkinson Microwave Anisotropy Probe data, the SPT cluster sample constrains σ_8 = 0.795 ± 0.016 and Ω_m = 0.255 ± 0.016, a factor of 1.5 improvement on each parameter over the CMB data alone. We consider several extensions beyond the ΛCDM model by including the following as free parameters: the dark energy equation of state (w), the sum of the neutrino masses (Σm ν), the effective number of relativistic species (N_(eff)), and a primordial non-Gaussianity (f_(NL)). We find that adding the SPT cluster data significantly improves the constraints on w and Σm_ν beyond those found when using measurements of the CMB, supernovae, baryon acoustic oscillations, and the Hubble constant. Considering each extension independently, we best constrain w = –0.973 ± 0.063 and the sum of neutrino masses Σm_ν < 0.28 eV at 95% confidence, a factor of 1.25 and 1.4 improvement, respectively, over the constraints without clusters. Assuming a ΛCDM model with a free N_(eff) and Σm_ν, we measure N_(eff) = 3.91 ± 0.42 and constrain Σm_ν < 0.63 eV at 95% confidence. We also use the SPT cluster sample to constrain f_(NL) = –220 ± 317, consistent with zero primordial non-Gaussianity. Finally, we discuss the current systematic limitations due to the cluster mass calibration, and future improvements for the recently completed 2500 deg^2 SPT-SZ survey. The survey has detected ~500 clusters with a median redshift of ~0.5 and a median mass of ~2.3 × 10^(14) M_☉ h^(–1) and, when combined with an improved cluster mass calibration and existing external cosmological data sets will significantly improve constraints on w.

M. Lueker | J. E. Ruhl | Z. Staniszewski | J. E. Carlstrom | Adrian T. Lee | E. M. Leitch | C. L. Reichardt | E. M. George | K. A. Aird | B. A. Benson | L. E. Bleem | T. M. Crawford | A. T. Crites | N. W. Halverson | W. L. Holzapfel | S. Hoover | R. Keisler | D. P. Marrone | J. J. McMahon | J. Mehl | S. S. Meyer | T. E. Montroy | T. Natoli | S. Padin | B. R. Saliwanchik | K. K. Schaffer | E. Shirokoff | K. Story | J. D. Vieira | R. Williamson | B. Stalder | A. Rest | C. Pryke | L. Knox | G. P. Holder | K. Vanderlinde | D. Luong-Van | J. D. Hrubes | R. Armstrong | C. W. Stubbs | O. Zahn | A. Clocchiatti | S. Desai | M. McDonald | A. van Engelen | C. Jones | M. Brodwin | M. Bautz | S. S. Murray | R. J. Foley | W. R. Forman | J. Mohr | S. Meyer | A. Lee | T. Montroy | J. Ruhl | B. Benson | J. Carlstrom | C. Chang | T. Haan | M. Dobbs | N. Halverson | N. Harrington | W. Holzapfel | T. Natoli | S. Padin | J. Sayre | E. Shirokoff | A. Stark | K. Story | K. Vanderlinde | J. Vieira | S. Desai | C. Stubbs | A. Rest | R. Foley | A. Zenteno | M. Brodwin | H. Spieler | R. Armstrong | B. Stalder | M. Joy | A. Clocchiatti | O. Zahn | L. Knox | F. W. High | W. Forman | D. Marrone | T. de Haan | H. Cho | C. Jones | S. Murray | K. Schaffer | C. Reichardt | R. Keisler | K. Aird | L. Bleem | T. Crawford | A. Crites | J. Dudley | E. George | G. Holder | S. Hoover | J. Hrubeš | E. Leitch | M. Lueker | D. Luong-Van | J. McMahon | J. Mehl | T. Plagge | C. Pryke | L. Shaw | Z. Staniszewski | A. V. Engelen | R. Williamson | M. Bautz | M. Ashby | M. Gladders | L. Mocanu | M. Bayliss | J. Ruel | J. Liu | A. Mantz | M. McDonald | B. Saliwanchik | A. Saro | J. Song | A. Vikhlinin | G. Bazin | Hsiao-mei Cho. | K. Andersson | C. L. Chang | J. J. Mohr | R. Suhada | T. de Haan | J. P. Dudley | K. Andersson | M. Bayliss | G. Bazin | H. M. Cho | M. A. Dobbs | M. D. Gladders | M. Joy | A. T. Lee | A. Mantz | L. Mocanu | T. Plagge | J. Ruel | A. Saro | L. Shaw | J. Song | H. G. Spieler | A. A. Stark | R. Suhada | A. Vikhlinin | A. Zenteno | J. Liu | A. van Engelen | C. Chang | M. Lueker | A. Gonzalez | A. Gonzalez | J. Song | Anthony H. Gonzalez | S. Murray | C. Pryke | C. Jones | S. Meyer

[1]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[2]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[3]  M. Lueker,et al.  A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH TWO YEARS OF SOUTH POLE TELESCOPE OBSERVATIONS , 2011, 1111.0932.

[4]  P. A. R. Ade,et al.  GALAXY CLUSTERS SELECTED WITH THE SUNYAEV–ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS , 2010, 1003.0005.

[5]  M. Halpern,et al.  THE ATACAMA COSMOLOGY TELESCOPE: SUNYAEV–ZEL'DOVICH-SELECTED GALAXY CLUSTERS AT 148 GHz IN THE 2008 SURVEY , 2010, 1010.1065.

[6]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM , 2010, 1009.0866.

[7]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGY FROM GALAXY CLUSTERS DETECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT , 2010, 1010.1025.

[8]  The impact of mergers on relaxed x-ray clusters II: effects on global X-ray and Sunyaev-Zel'dovich properties and their scaling relations , 2007, astro-ph/0701586.

[9]  Ryan Keisler,et al.  How massless neutrinos affect the cosmic microwave background damping tail , 2011, 1104.2333.

[10]  Adrian T. Lee,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1409.0850.

[11]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[12]  J. Frieman,et al.  COSMOLOGICAL CONSTRAINTS FROM THE SLOAN DIGITAL SKY SURVEY MaxBCG CLUSTER CATALOG , 2009, 0902.3702.

[13]  M. Meneghetti,et al.  SCALING RELATION IN TWO SITUATIONS OF EXTREME MERGERS , 2010, 1012.4027.

[14]  G. W. Pratt,et al.  Planck early results Special feature Planck early results . VIII . The all-sky early Sunyaev-Zeldovich cluster sample , 2011 .

[15]  T. Schwetz,et al.  Are there sterile neutrinos at the eV scale? , 2011, Physical review letters.

[16]  O. Zahn,et al.  SHARPENING THE PRECISION OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM , 2009, 0903.5322.

[17]  S. Borgani,et al.  X-ray mass proxies from hydrodynamic simulations of galaxy clusters – I , 2011, 1102.2903.

[18]  Vikhlinin Kravtsov The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 11/27/05 A NEW ROBUST LOW-SCATTER X-RAY MASS INDICATOR FOR CLUSTERS OF GALAXIES , 2006 .

[19]  T. Jeltema,et al.  Cluster Structure in Cosmological Simulations. I. Correlation to Observables, Mass Estimates, and Evolution , 2007, 0708.1518.

[20]  Adrian T. Lee,et al.  A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies , 2012, Nature.

[21]  P. Steinhardt,et al.  Cluster Abundance Constraints for Cosmological Models with a Time-varying, Spatially Inhomogeneous Energy Component with Negative Pressure , 1998 .

[22]  P. A. R. Ade,et al.  MEASUREMENTS OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4317.

[23]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[24]  Astrophysics,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 SPECTRAL ENERGY DISTRIBUTION OF RADIO SOURCES IN NEARBY CLUSTERS OF GALAXIES: IMPLICATIONS FOR SUNYAEV-ZEL’DOVICH EFFECT SURVEYS , 2022 .

[25]  P. A. R. Ade,et al.  X-RAY PROPERTIES OF THE FIRST SUNYAEV–ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTER SAMPLE FROM THE SOUTH POLE TELESCOPE , 2010, 1006.3068.

[26]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[27]  Birmingham,et al.  LoCuSS: Subaru Weak Lensing Study of 30 Galaxy Clusters , 2009, 0903.1103.

[28]  A. Hornstrup,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT. II. SAMPLES AND X-RAY DATA REDUCTION , 2008, 0805.2207.

[29]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[30]  G. Holder,et al.  The Impact of Halo Properties, Energy Feedback, and Projection Effects on the Mass-SZ Flux Relation , 2007, 0710.4555.

[31]  J. Weller,et al.  Accurate Realizations of the Ionized Gas in Galaxy Clusters: Calibrating Feedback , 2006, astro-ph/0612663.

[32]  B. Welsch,et al.  ARE DECAYING MAGNETIC FIELDS ABOVE ACTIVE REGIONS RELATED TO CORONAL MASS EJECTION ONSET? , 2012, 1211.4684.

[33]  P. A. R. Ade,et al.  IMPROVED CONSTRAINTS ON COSMIC MICROWAVE BACKGROUND SECONDARY ANISOTROPIES FROM THE COMPLETE 2008 SOUTH POLE TELESCOPE DATA , 2010, 1012.4788.

[34]  Katrin Heitmann,et al.  MASS FUNCTION PREDICTIONS BEYOND ΛCDM , 2010, 1005.2239.

[35]  Jeremiah P. Ostriker,et al.  SIMULATIONS OF THE MICROWAVE SKY , 2009, 0908.0540.

[36]  Michael S. Turner,et al.  Primordial Nucleosynthesis Including Radiative, Coulomb, and Finite Temperature Corrections to Weak Rates , 1982 .

[37]  Amber D. Miller,et al.  LoCuSS: THE SUNYAEV–ZEL'DOVICH EFFECT AND WEAK-LENSING MASS SCALING RELATION , 2011, 1107.5115.

[38]  M. Lima,et al.  Lensing magnification: implications for counts of submillimetre galaxies and SZ clusters , 2009, 0907.4387.

[39]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[40]  A. Gopakumar,et al.  TESTING THE BLACK HOLE NO-HAIR THEOREM WITH OJ287 , 2011, 1108.5861.

[41]  Adrian T. Lee,et al.  DISCOVERY AND COSMOLOGICAL IMPLICATIONS OF SPT-CL J2106-5844, THE MOST MASSIVE KNOWN CLUSTER AT z>1 , 2011, 1101.1286.

[42]  M. Becker,et al.  ON THE ACCURACY OF WEAK-LENSING CLUSTER MASS RECONSTRUCTIONS , 2010, 1011.1681.

[43]  P. A. R. Ade,et al.  OPTICAL REDSHIFT AND RICHNESS ESTIMATES FOR GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS , 2010, 1003.0005.

[44]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[45]  N. Suzuki,et al.  The Cosmological Baryon Density from the Deuterium-to-Hydrogen Ratio in QSO Absorption Systems: D/H toward Q1243+3047 , 2003, astro-ph/0302006.

[46]  Alexey Vikhlinin,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.

[47]  J. G. Bartlett,et al.  Catalog extraction in SZ cluster surveys : a matched filter approach , 2006, astro-ph/0602424.

[48]  The Influence of Environment on the Star Formation Rates of Galaxies , 1997, astro-ph/9712319.

[49]  H. Hoekstra A comparison of weak-lensing masses and X-ray properties of galaxy clusters , 2007, 0705.0358.

[50]  A. Letourneau,et al.  The reactor antineutrino anomaly , 2011, 1101.2755.

[51]  L. Verde,et al.  Robust neutrino constraints by combining low redshift observations with the CMB , 2009, 0910.0008.

[52]  J. Kneib,et al.  LoCuSS: comparison of observed X-ray and lensing galaxy cluster scaling relations with simulations , 2008, 0802.0770.

[53]  M. Lueker,et al.  A MEASUREMENT OF THE DAMPING TAIL OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM WITH THE SOUTH POLE TELESCOPE , 2011, 1105.3182.

[54]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[55]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[56]  Adrian T. Lee,et al.  EXTRAGALACTIC MILLIMETER-WAVE SOURCES IN SOUTH POLE TELESCOPE SURVEY DATA: SOURCE COUNTS, CATALOG, AND STATISTICS FOR AN 87 SQUARE-DEGREE FIELD , 2009, 0912.2338.

[57]  James J. Bock,et al.  BLAST: A FAR-INFRARED MEASUREMENT OF THE HISTORY OF STAR FORMATION , 2009, 0904.1206.

[58]  Thailand,et al.  The evolution of galaxy cluster X-ray scaling relations , 2010, 1002.4539.

[59]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[60]  G. Rieke,et al.  IR Observations of MS 1054–03: Star Formation and Its Evolution in Rich Galaxy Clusters , 2007, 0704.0953.

[61]  A. Evrard,et al.  MASSIVE HALOS IN MILLENNIUM GAS SIMULATIONS: MULTIVARIATE SCALING RELATIONS , 2009, 0910.1599.

[62]  Max Tegmark,et al.  Using the kinematic Sunyaev-Zeldovich effect to determine the peculiar velocities of clusters of galaxies , 1995 .

[63]  Adrian T. Lee,et al.  WEAK-LENSING MASS MEASUREMENTS OF FIVE GALAXY CLUSTERS IN THE SOUTH POLE TELESCOPE SURVEY USING MAGELLAN/MEGACAM , 2012, 1205.3103.

[64]  M. S. Burns,et al.  SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.

[65]  J. Baillaud,et al.  The Astrophysical Journal; T. XXI ; 1905 , 2022 .

[66]  S. Matarrese,et al.  Non-Gaussianity from inflation: theory and observations , 2004 .

[67]  D. Huterer,et al.  Simultaneous falsification of Λ CDM and quintessence with massive, distant clusters , 2010, 1011.0004.

[68]  Spectra and Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation , 2010, 1004.1711.

[69]  D. Nagai,et al.  EVOLUTION OF THE MERGER-INDUCED HYDROSTATIC MASS BIAS IN GALAXY CLUSTERS , 2011, 1112.3659.

[70]  H. Hoekstra,et al.  Evidence for non-hydrostatic gas from the cluster X-ray to lensing mass ratio , 2007, 0710.4132.

[71]  H. Hoekstra,et al.  The Canadian Cluster Comparison Project: weak lensing masses and SZ scaling relations† , 2012, 1208.0606.

[72]  Cluster Abundance Constraints on Quintessence Models , 1998, astro-ph/9804015.

[73]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[74]  P. A. R. Ade,et al.  SPT-CL J0546-5345: A MASSIVE z>1 GALAXY CLUSTER SELECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT WITH THE SOUTH POLE TELESCOPE , 2010, 1006.5639.

[75]  J. Kneib,et al.  GALAXIES IN X-RAY GROUPS. I. ROBUST MEMBERSHIP ASSIGNMENT AND THE IMPACT OF GROUP ENVIRONMENTS ON QUENCHING , 2011, 1109.6040.

[76]  S. Dodelson,et al.  Precision Detection of the Cosmic Neutrino Background , 1998, astro-ph/9803095.

[77]  S. W. Allen,et al.  New constraints on dark energy from the observed growth of the most X-ray luminous galaxy clusters , 2007, 0709.4294.

[78]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[79]  Harvard,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[80]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[81]  P. A. R. Ade,et al.  A SUNYAEV–ZEL'DOVICH-SELECTED SAMPLE OF THE MOST MASSIVE GALAXY CLUSTERS IN THE 2500 deg2 SOUTH POLE TELESCOPE SURVEY , 2011, 1101.1290.

[82]  Constraining neutrino masses by CMB experiments alone , 2004, astro-ph/0409768.

[83]  D. Huterer,et al.  Imprints of primordial non-Gaussianities on large-scale structure: Scale-dependent bias and abundance of virialized objects , 2007, 0710.4560.

[84]  J. Mohr,et al.  Constraints on Cosmological Parameters from Future Galaxy Cluster Surveys , 2000, astro-ph/0002336.

[85]  Adrian T. Lee,et al.  South Pole Telescope optics. , 2008, Applied optics.

[86]  P. A. R. Ade,et al.  GALAXY CLUSTERS DISCOVERED WITH A SUNYAEV–ZEL'DOVICH EFFECT SURVEY , 2008, 0810.1578.

[87]  Martin White,et al.  Cluster galaxy dynamics and the effects of large-scale environment , 2010, 1005.3022.

[88]  Gennaro Miele,et al.  Relic neutrino decoupling including flavour oscillations , 2005 .