On the reduction of multivariate quadratic systems to best rank-1 approximation of three-way tensors

In this paper, we show that a general quadratic multivariate system in the real field can be reduced to a best rank-1 three-way tensor approximation problem. This fact provides a new approach to tackle a system of quadratic polynomials equations. Some experiments using the standard alternating least squares (ALS) algorithm are drawn to evince the usefulness of rank-1 tensor approximation methods.

[1]  J. Verschelde Polynomial Homotopies for Dense, Sparse and Determinantal Systems , 1999, math/9907060.

[2]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[3]  Pierre Comon,et al.  Symmetric tensor decomposition , 2009, 2009 17th European Signal Processing Conference.

[4]  Na Li,et al.  Some Convergence Results on the Regularized Alternating Least-Squares Method for Tensor Decomposition , 2011, 1109.3831.

[5]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[6]  Zhiping Lin,et al.  Applications of Gröbner bases to signal and image processing: a survey , 2004 .

[7]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[8]  Bernard Mourrain,et al.  Border basis relaxation for polynomial optimization , 2016, J. Symb. Comput..

[9]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[10]  T. Y. Li Numerical solution of multivariate polynomial systems by homotopy continuation methods , 2008 .

[11]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[12]  Li Wang,et al.  Semidefinite Relaxations for Best Rank-1 Tensor Approximations , 2013, SIAM J. Matrix Anal. Appl..

[13]  S. Friedland Best rank one approximation of real symmetric tensors can be chosen symmetric , 2011, 1110.5689.

[14]  Dima Grigoriev,et al.  Polynomial-time computing over quadratic maps i: sampling in real algebraic sets , 2004, computational complexity.

[15]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[16]  Adi Shamir,et al.  Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations , 2000, EUROCRYPT.

[17]  Richard J. Lipton,et al.  Nash Equilibria via Polynomial Equations , 2004, LATIN.

[18]  André Uschmajew,et al.  Local Convergence of the Alternating Least Squares Algorithm for Canonical Tensor Approximation , 2012, SIAM J. Matrix Anal. Appl..

[19]  Christopher Wolf,et al.  Solving Underdetermined Systems of Multivariate Quadratic Equations Revisited , 2012, Public Key Cryptography.

[20]  R. Schnabel,et al.  Tensor Methods for Nonlinear Equations. , 1984 .

[21]  Justin K. Romberg,et al.  An Overview of Low-Rank Matrix Recovery From Incomplete Observations , 2016, IEEE Journal of Selected Topics in Signal Processing.