Equations of Motion from a Data Series

Temporal pattern learning, control and prediction, and chaotic data analysis share a common problem: deducing optimal equations of motion from observations of time-dependent behavior. Each desires to obtain models of the physical world from limited information. We describe a method to reconstruct the deterministic portion of the equations of motion directly from a data series. These equations of motion represent a vast reduction of a chaotic data set’s observed complexity to a compact, algorithmic specification. This approach employs an informational measure of model optimality to guide searching through the space of dynamical systems. As corollary results, we indicate how to estimate the minimum embedding dimension, extrinsic noise level, metric entropy, and Lyapunov spectrum. Numerical and experimental applications demonstrate the method’s feasibility and limitations. Extensions to estimating parametrized families of dynamical systems from bifurcation data and to spatial pattern evolution are presented. Applications to predicting chaotic data and the design of forecasting, learning, and control systems, are discussed.

[1]  J. Rogers Chaos , 1876, Molecular Vibrations.

[2]  H. Poincaré Science and Hypothesis , 1906 .

[3]  J. Proudfoot,et al.  Noise , 1931, The Indian medical gazette.

[4]  H. Whitney The Self-Intersections of a Smooth n-Manifold in 2n-Space , 1944 .

[5]  Claude E. Shannon,et al.  The Mathematical Theory of Communication , 1950 .

[6]  John G. Kemeny,et al.  The Use of Simplicity in Induction , 1953 .

[7]  N. Wiener Nonlinear Prediction and Dynamics , 1956 .

[8]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[9]  E. Lorenz The problem of deducing the climate from the governing equations , 1964 .

[10]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[11]  J. Pain,et al.  Fluid Dynamics , 1967, Nature.

[12]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[13]  Keinosuke Fukunaga,et al.  An Algorithm for Finding Intrinsic Dimensionality of Data , 1971, IEEE Transactions on Computers.

[14]  James Hardy Wilkinson,et al.  Linear algebra , 1971, Handbook for automatic computation.

[15]  F. Takens,et al.  On the nature of turbulence , 1971 .

[16]  H. Akaike A new look at the statistical model identification , 1974 .

[17]  D. R. J. Chillingworth,et al.  Differential topology with a view to applications , 1976 .

[18]  Y. Oono A Heuristic Approach to the Kolmogorov Entropy as a Disorder Parameter , 1978 .

[19]  O. Rössler An equation for hyperchaos , 1979 .

[20]  I. Shimada,et al.  A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .

[21]  E. T. Jaynes,et al.  Where do we Stand on Maximum Entropy , 1979 .

[22]  N. MacDonald Noisy chaos , 1980, Nature.

[23]  N. Packard,et al.  POWER SPECTRA AND MIXING PROPERTIES OF STRANGE ATTRACTORS , 1980 .

[24]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[25]  M. Priestley STATE‐DEPENDENT MODELS: A GENERAL APPROACH TO NON‐LINEAR TIME SERIES ANALYSIS , 1980 .

[26]  D. Ruelle Small random perturbations of dynamical systems and the definition of attractors , 1981 .

[27]  F. Takens Detecting strange attractors in turbulence , 1981 .

[28]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[29]  J. D. Farmer,et al.  ON DETERMINING THE DIMENSION OF CHAOTIC FLOWS , 1981 .

[30]  N. Packard,et al.  Symbolic dynamics of one-dimensional maps: Entropies, finite precision, and noise , 1982 .

[31]  B. Huberman,et al.  Fluctuations and simple chaotic dynamics , 1982 .

[32]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[33]  N. Packard,et al.  Symbolic dynamics of noisy chaos , 1983 .

[34]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[35]  S. C. Pope,et al.  The chaotic behavior of the leaky faucet , 1985 .

[36]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[37]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[38]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[39]  Gottfried Mayer-Kress,et al.  Dimensions and Entropies in Chaotic Systems , 1986 .

[40]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986, Encyclopedia of Big Data.

[41]  J. Holland A mathematical framework for studying learning in classifier systems , 1986 .

[42]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[43]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[44]  G. Mayer-Kress,et al.  Dimensions and entropies in chaotic systems : quantification of complex behavior : proceedings of an international workshop at the Pecos River Ranch, New Mexico, September 11-16, 1985 , 1986 .

[45]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[46]  Masanao Aoki,et al.  State Space Modeling of Time Series , 1987 .

[47]  James P. Crutchfield,et al.  Phenomenology of Spatio-Temporal Chaos , 1987 .

[48]  Stephen M. Omohundro,et al.  Efficient Algorithms with Neural Network Behavior , 1987, Complex Syst..