Genetic algorithm design of Pareto optimal broadband microwave absorbers

The concept of Pareto optimality is applied to the study of choice tradeoffs between reflectivity and thickness in the design of multilayer microwave absorbers. Absorbers composed of a given number of layers of absorbing materials selected from a predefined database of available materials are considered. Three types of Pareto genetic algorithms for absorber synthesis are introduced and compared to each other, as well as to methods operating with the weighted Tchebycheff method for Pareto optimization. The Pareto genetic algorithms are applied to construct Pareto fronts for microwave absorbers with five layers of materials selected from a representative database of available materials in the 0.2-2 GHz, 2-8 GHz, and 9-11 GHz bands.

[1]  T. Ellam An update on the design and synthesis of compact absorber for EMC chamber applications , 1994, Proceedings of IEEE Symposium on Electromagnetic Compatibility.

[2]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[3]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[4]  J. Simkin,et al.  Optimizing electromagnetic devices combining direct search methods with simulated annealing , 1992 .

[5]  C. Holloway,et al.  A low-frequency model for wedge or pyramid absorber arrays-I: theory , 1994 .

[6]  Marc Schoenauer,et al.  Simulated Darwinian evolution of homogenous multilayer systems: a new method for optical coatings design , 1994 .

[7]  H. G. Jerrard,et al.  Computer-aided techniques for the design of multilayer filters , 1981 .

[8]  R. Mittra,et al.  Optimization of multilayer antireflection coatings using an optimal control method , 1992 .

[9]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[10]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[11]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[12]  J. Eheart,et al.  Using Genetic Algorithms to Solve a Multiobjective Groundwater Monitoring Problem , 1995 .

[13]  Raj Mittra,et al.  Design of electrically loaded wire antennas using genetic algorithms , 1996 .

[14]  R. Mittra,et al.  Design of lightweight, broad-band microwave absorbers using genetic algorithms , 1993 .

[15]  Randy L. Haupt Thinned arrays using genetic algorithms , 1994 .

[16]  Alan Tennant,et al.  Design of wideband Jaumann radar absorbers with optimum oblique incidence performance , 1994 .

[17]  L.J. du Toit,et al.  Advances in the design of Jaumann absorbers , 1990, International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's.

[18]  C. Holloway,et al.  A low-frequency model for wedge or pyramid absorber arrays-II: computed and measured results , 1994 .

[19]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[20]  R. Fante,et al.  Reflection properties of the Salisbury screen , 1988 .

[21]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[22]  Ralph E. Steuer Multiple criteria optimization , 1986 .

[23]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[24]  A. P. Anderson,et al.  Array pattern nulling by element position perturbations using a genetic algorithm , 1994 .

[25]  Raj Mittra,et al.  Optimal multilayer filter design using real coded genetic algorithms , 1992 .

[26]  Jose Perini,et al.  Design of broad-band radar-absorbing materials for large angles of incidence , 1993 .

[27]  D. H. Marks,et al.  A review and evaluation of multiobjective programing techniques , 1975 .