Computation theory of cellular automata

Self-organizing behaviour in cellular automata is discussed as a computational process. Formal language theory is used to extend dynamical systems theory descriptions of cellular automata. The sets of configurations generated after a finite number of time steps of cellular automaton evolution are shown to form regular languages. Many examples are given. The sizes of the minimal grammars for these languages provide measures of the complexities of the sets. This complexity is usually found to be non-decreasing with time. The limit sets generated by some classes of cellular automata correspond to regular languages. For other classes of cellular automata they appear to correspond to more complicated languages. Many properties of these sets are then formally non-computable. It is suggested that such undecidability is common in these and other dynamical systems.

[1]  I. Good Normal Recurring Decimals , 1946 .

[2]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[3]  Claude E. Shannon,et al.  Prediction and entropy of printed English , 1951 .

[4]  George A. Miller,et al.  Finite State Languages , 1958, Inf. Control..

[5]  A. Nerode,et al.  Linear automaton transformations , 1958 .

[6]  P. Billingsley,et al.  Ergodic theory and information , 1966 .

[7]  E. F. Codd,et al.  Cellular automata , 1968 .

[8]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[9]  F. P. Kaminger The Noncomputability of the Channel Capacity of Context-Senstitive Languages , 1970, Inf. Control..

[10]  Werner Kuich,et al.  On the Entropy of Context-Free Languages , 1970, Inf. Control..

[11]  Alvy Ray Smith,et al.  Simple Computation-Universal Cellular Spaces , 1971, JACM.

[12]  J. Conway Regular algebra and finite machines , 1971 .

[13]  Anthony Manning,et al.  Axiom A Diffeomorphisms have Rational Zeta Functions , 1971 .

[14]  Alvy Ray Smith,et al.  Real-Time Language Recognition by One-Dimensional Cellular Automata , 1972, J. Comput. Syst. Sci..

[15]  B. Weiss Subshifts of finite type and sofic systems , 1973 .

[16]  Takeo Yaku,et al.  The Constructibility of a Configuration in a Cellular automaton , 1973, J. Comput. Syst. Sci..

[17]  Differences between 1- and 2-Dimensional Cell Spaces , 1975, Automata, Languages, Development.

[18]  Michael E. Paul,et al.  Sofic systems , 1975 .

[19]  P. Walters Introduction to Ergodic Theory , 1977 .

[20]  Michael E. Paul,et al.  Finite procedures for sofic systems , 1977 .

[21]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  I. Stewart,et al.  Algebraic Number Theory , 1992, All the Math You Missed.

[24]  M. Garey Johnson: computers and intractability: a guide to the theory of np- completeness (freeman , 1979 .

[25]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[26]  Grzegorz Rozenberg,et al.  The mathematical theory of L systems , 1980 .

[27]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[28]  Frank S. Beckman Mathematical foundations of programming , 1980 .

[29]  Michael Doob,et al.  Spectra of graphs , 1980 .

[30]  E. Berlekamp,et al.  Winning Ways for Your Mathematical Plays , 1983 .

[31]  Richard D Field,et al.  A QCD Model for e+ e- Annihilation , 1983 .

[32]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[33]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[34]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[35]  P. Grassberger New mechanism for deterministic diffusion , 1983 .

[36]  Peter Grassberger,et al.  Chaos and diffusion in deterministic cellular automata , 1984 .

[37]  A. Odlyzko,et al.  Algebraic properties of cellular automata , 1984 .

[38]  D. Lind Applications of ergodic theory and sofic systems to cellular automata , 1984 .

[39]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[40]  D. Lind The entropies of topological Markov shifts and a related class of algebraic integers , 1984, Ergodic Theory and Dynamical Systems.

[41]  S. Wolfram,et al.  Two-dimensional cellular automata , 1985 .